论文标题

图形神经网络的最佳传播

Optimal Propagation for Graph Neural Networks

论文作者

Zhao, Beidi, Du, Boxin, Xu, Zhe, Li, Liangyue, Tong, Hanghang

论文摘要

图形神经网络(GNN)通过依靠固定的图形数据作为输入,在各种现实世界应用中取得了巨大的成功。但是,由于信息稀缺,噪声,对抗性攻击或图形拓扑,功能和地面图标签之间的分布之间的差异,因此初始输入图可能并不是最佳的,因为信息稀缺,噪声,对抗性攻击或差异。在本文中,我们提出了一种通过直接学习个性化的PageRank繁殖矩阵以及下游半监督节点分类来学习最佳图形结构的双层优化方法。我们还探索了一个低级近似模型,以进一步降低时间复杂性。经验评估表明,所提出的模型的优势和鲁棒性超过所有基线方法。

Graph Neural Networks (GNNs) have achieved tremendous success in a variety of real-world applications by relying on the fixed graph data as input. However, the initial input graph might not be optimal in terms of specific downstream tasks, because of information scarcity, noise, adversarial attacks, or discrepancies between the distribution in graph topology, features, and groundtruth labels. In this paper, we propose a bi-level optimization approach for learning the optimal graph structure via directly learning the Personalized PageRank propagation matrix as well as the downstream semi-supervised node classification simultaneously. We also explore a low-rank approximation model for further reducing the time complexity. Empirical evaluations show the superior efficacy and robustness of the proposed model over all baseline methods.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源