论文标题

可重新配置的异质平行岛模型

Reconfigurable Heterogeneous Parallel Island Models

论文作者

da Silveira, Lucas Ângelo, de Lima, Thaynara Arielly, Ayala-Rincón, Mauricio

论文摘要

异质的平行岛模型(HEPIMS)在其岛屿中运行不同的生物启发算法(BAS)。从各种通信拓扑和移民政策进行了对同质PIMS(福利姆斯)的微调(福伊斯),它们在所有岛屿上运行相同的BA,先前的作品引入了HEPIMS,提供了有关霍皮姆人适应最佳的BA的竞争性质量解决方案。这项工作向前迈出了一步,维持赫皮姆人提供的人口多样性,并提高其灵活性,使BA在执行过程中对岛屿进行重新配置:根据他们的表现,岛屿可以在进化过程中动态地替代其基础。使用引入的体系结构(Rechepims)进行的实验被应用于通过使用四种不同的BAS对逆转进行排列的NP硬化问题,即简单的遗传算法,双点交叉遗传算法,差异性进化和自调整粒子粒子的优化。结果表明,新的可重构异质模型计算出比霍皮姆人在霍皮姆(Hepim)上运行最适合的BA的Hepims更好的质量解决方案。

Heterogeneous Parallel Island Models (HePIMs) run different bio-inspired algorithms (BAs) in their islands. From a variety of communication topologies and migration policies fine-tuned for homogeneous PIMs (HoPIMs), which run the same BA in all their islands, previous work introduced HePIMs that provided competitive quality solutions regarding the best-adapted BA in HoPIMs. This work goes a step forward, maintaining the population diversity provided by HePIMs, and increasing their flexibility, allowing BA reconfiguration on islands during execution: according to their performance, islands may substitute their BAs dynamically during the evolutionary process. Experiments with the introduced architectures (RecHePIMs) were applied to the NP-hard problem of sorting permutations by reversals, using four different BAs, namely, simple Genetic Algorithm, Double-point crossover Genetic Algorithm, Differential Evolution, and self-adjusting Particle Swarm Optimization. The results showed that the new reconfigurable heterogeneous models compute better quality solutions than the HePIMs closing the gap with the HoPIM running the best-adapted BA.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源