论文标题

GreendB:迈向产品的可持续性数据库

GreenDB: Toward a Product-by-Product Sustainability Database

论文作者

Jäger, Sebastian, Greene, Jessica, Jakob, Max, Korenke, Ruben, Santarius, Tilman, Biessmann, Felix

论文摘要

消费品的生产,运输,使用和处置对温室气体排放和资源耗竭有重大影响。现代零售平台在很大程度上依靠机器学习(ML)来搜索和推荐系统。因此,ML可以通过考虑产品搜索或建议中的可持续性方面来实现更可持续的消费模式的努力。但是,利用ML的潜力达到可持续性目标需要有关可持续性的数据。不幸的是,没有开放且公开可用的数据库以逐量产品为基础集成了可持续性信息。在这项工作中,我们提出了填补这一空白的GreendB。根据数百万用户的搜索日志,我们优先考虑哪些产品用户最关心的是最关心的。 GreendB模式扩展了著名的Schema.org产品定义,并且可以轻松地集成到现有的产品目录中,以改善可用于搜索和建议体验的可持续性信息。我们介绍了创建GreendB数据集的刮擦系统的概念证明。

The production, shipping, usage, and disposal of consumer goods have a substantial impact on greenhouse gas emissions and the depletion of resources. Modern retail platforms rely heavily on Machine Learning (ML) for their search and recommender systems. Thus, ML can potentially support efforts towards more sustainable consumption patterns, for example, by accounting for sustainability aspects in product search or recommendations. However, leveraging ML potential for reaching sustainability goals requires data on sustainability. Unfortunately, no open and publicly available database integrates sustainability information on a product-by-product basis. In this work, we present the GreenDB, which fills this gap. Based on search logs of millions of users, we prioritize which products users care about most. The GreenDB schema extends the well-known schema.org Product definition and can be readily integrated into existing product catalogs to improve sustainability information available for search and recommendation experiences. We present our proof of concept implementation of a scraping system that creates the GreenDB dataset.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源