论文标题

嘈杂量子网络中非局部性的变化量子优化

Variational Quantum Optimization of Nonlocality in Noisy Quantum Networks

论文作者

Doolittle, Brian, Bromley, Tom, Killoran, Nathan, Chitambar, Eric

论文摘要

量子通信网络的固有噪声和复杂性导致使用经典方法设计量子网络协议的挑战。为了解决此问题,我们开发了一个变性量子优化框架,该框架模拟量子硬件上的量子网络并使用差分编程技术优化网络。我们使用混合框架来优化嘈杂的量子网络中的非局部性。在嘈杂的IBM量子计算机上,我们演示了框架最大化量子非局部性的能力。在具有静态噪声模型的经典模拟器上,我们研究了量子非局部性的噪声鲁棒性,相对于Unital和非致命通道。在这两种情况下,我们都发现我们的优化方法可以在发现有趣现象的同时再现已知结果。当存在Unital噪声时,我们发现数值证据表明最大的纠缠状态制剂会产生最大的非局部性。当存在不作噪声时,我们发现非对纠缠状态可以产生最大的非局部性。因此,我们表明,变化量子优化是近期量子网络的实用设计工具。从长远来看,我们的变异量子优化技术显示出超越经典方法扩展的承诺,并且可以在量子网络硬件上部署,以优化量子通信协议,以根据其固有的噪声来优化量子通信协议。

The inherent noise and complexity of quantum communication networks leads to challenges in designing quantum network protocols using classical methods. To address this issue, we develop a variational quantum optimization framework that simulates quantum networks on quantum hardware and optimizes the network using differential programming techniques. We use our hybrid framework to optimize nonlocality in noisy quantum networks. On the noisy IBM quantum computers, we demonstrate our framework's ability to maximize quantum nonlocality. On a classical simulator with a static noise model, we investigate the noise robustness of quantum nonlocality with respect to unital and nonunital channels. In both cases, we find that our optimization methods can reproduce known results, while uncovering interesting phenomena. When unital noise is present we find numerical evidence suggesting that maximally entangled state preparations yield maximal nonlocality. When nonunital noise is present we find that nonmaximally entangled states can yield maximal nonlocality. Thus, we show that variational quantum optimization is a practical design tool for quantum networks in the near-term. In the long-term, our variational quantum optimization techniques show promise of scaling beyond classical approaches and can be deployed on quantum network hardware to optimize quantum communication protocols against their inherent noise.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源