论文标题
Atom-Thick WSE2中的巨型山谷 - Zeeman旋转轨道场的旋转操作
Spin Manipulation by Giant Valley-Zeeman Spin-Orbit Field in Atom-Thick WSe2
论文作者
论文摘要
源自自旋轨道耦合(SOC)的现象为旋转操作和设备应用提供了节能策略。破裂的反转对称界面和由此产生的电场诱导了RASHBA型自旋轨道场(SOF),已证明它可以生成用于数据存储应用的自旋轨道扭矩。在这项研究中,我们发现在室温下单层WSE2中的山谷塞曼SOF可以实现自旋翻转,这表现为垂直自旋阀中的负磁场。基于WSE2 K谷附近的有效模型的量子传输计算证实了载体下载体的进型自旋传输,据估计,该载体据估计为650 t。特别是,山谷Zeman SOF诱导的自旋动力学被证明是可调的,可以调谐,并具有WSE2的层和堆叠阶段的层和堆叠阶段,并为WSE 2提供了新的旋转策略,并可以旋转旋转策略,并具有旋转的策略,并具有旋转策略的效果,并具有旋转的策略。设备。
The phenomenon originating from spin-orbit coupling (SOC) provides energy-efficient strategies for spin manipulation and device applications. The broken inversion symmetry interface and resulting electric field induce a Rashba-type spin-orbit field (SOF), which has been demonstrated to generate spin-orbit torque for data storage applications. In this study, we found that spin flipping can be achieved by the valley-Zeeman SOF in monolayer WSe2 at room temperature, which manifests as a negative magnetoresistance in the vertical spin valve. Quantum transmission calculations based on an effective model near the K valley of WSe2 confirm the precessional spin transport of carriers under the giant SOF, which is estimated to be 650 T. In particular, the valley-Zeeman SOF-induced spin dynamics was demonstrated to be tunable with the layer number and stacking phase of WSe2 as well as the gate voltage, which provides a novel strategy for spin manipulation and can benefit the development of ultralow-power spintronic devices.