论文标题
使用图形分析计算交通事故高风险位置
Computing Traffic Accident High-Risk Locations Using Graph Analytics
论文作者
论文摘要
基于连接性和图形分析的交通事故事件事件与道路网络拓扑之间的动态关系的分析为识别,排名和分析交通事故的新方法在不同级别的时空粒度上高风险 - 风险分解。先前关于交通事故热点的研究主要采用了空间统计和地理信息系统(GIS),其中仅根据空间依赖而发现空间点模式,而没有识别事件的时间依赖性。一个限制是由于事件的时间聚集到绝对时间点的时间聚集而产生的,即结果在或过度估计之下或过度估计。此外,除了网络内核密度估计(NETKDE)之外,现有的方法将交通事故事件视为在二维地理空间上随机的事件。但是,交通事故事件是主要发生在道路网络空间上的网络约束事件。因此,在本文中,我们在网络空间方法上采用图形的连接性,该方法基于交通事故事件与道路网络几何形状之间的高风险位置确定事故高风险位置。为这项研究开发和实施了一个简单但可扩展的交通空间时间变化图(STVG)模型。交通事故使用时间依赖度的中心性和Pagerank Centrantil Graper图指标在空间和时间上进行了高风险 - 位置,并通过时间续报图查询进行了排名。这项研究为城市交通事故分析师提供了一种新的高效方法,可以在不同尺度上识别,排名和概况易于空间和时间。
Analysis of the dynamic relationship between traffic accident events and road network topology based on connectivity and graph analytics offers a new approach to identifying, ranking and profiling traffic accident high risk-locations at different levels of space and time granularities. Previous studies on traffic accident hot spots have mostly adopted spatial statistics and Geographic Information Systems (GIS) where spatial point patterns are discovered based only on spatial dependence with no recognition of the temporal dependence of the events. A limitation arises from the fact that the results are either under or over-estimated because of the temporal aggregation of the events to an absolute time point. Furthermore, the existing methods apart from the Network Kernel Density Estimation (NETKDE), consider traffic accident events as events randomly on a 2-D geographic space. However, traffic accident events are network constrained events that happens majorly on the road network space. Therefore, in this paper, we adopt the connectivity of graph on a network space approach that identifies accident high risk-locations based on space-time-varying connectivity between traffic accident events and the road network geometry. A simple but extensible traffic accident space time-varying graph (STVG) model is developed and implemented for this study. Traffic accident high risk-locations are identified and ranked in space and time using time-dependent degree centrality and PageRank centrality graph metrics respectively through time-incremental graph queries. This study offers urban traffic accident analysts with a new and efficient approach to identify, rank and profile accident-prone areas in space and time at different scales.