论文标题
来自真实二次双和的量子模块化形式
Quantum Modular Forms from Real Quadratic Double Sums
论文作者
论文摘要
在2015年,Lovejoy和Osburn发现了十二美元$ Q $ -HYPEREMOTIC系列,并证明了它们的傅立叶系数可以理解为在某些二次领域中理想的计算功能。在本文中,我们研究了它们的模块化和量子模块化特性,并表明它们在组$γ_0(2)$上产生了三种矢量值量子模块化形式。
In 2015, Lovejoy and Osburn discovered twelve $q$-hypergeometric series and proved that their Fourier coefficients can be understood as counting functions of ideals in certain quadratic fields. In this paper, we study their modular and quantum modular properties and show that they yield three vector-valued quantum modular forms on the group $Γ_0 (2)$.