论文标题
气势:隐式姿势编码以进行有效的视觉定位
ImPosing: Implicit Pose Encoding for Efficient Visual Localization
论文作者
论文摘要
我们提出了一种基于学习的新型配方,用于在城市规模环境中实时运行的车辆的视觉定位。视觉定位算法使用一组地理参考图像或3D场景表示,确定捕获图像的位置和方向。我们的新本地化范式,称为隐式姿势编码(Imposing),将图像和摄像头嵌入具有2个单独的神经网络的常见潜在表示中,以便我们可以为每个图像姿势配对计算一个相似性得分。通过以层次方式通过潜在空间评估候选人,相机位置和方向不会直接回归,而是逐步完善的。非常大的环境迫使竞争对手存储千兆字节的地图数据,而我们的方法与参考数据库大小无关。在本文中,我们描述了如何有效地优化我们学到的模块,如何将它们组合以实现实时定位,并在各种大规模场景上展示结果,这些场景在准确性和计算效率方面显着优于先前的工作。
We propose a novel learning-based formulation for visual localization of vehicles that can operate in real-time in city-scale environments. Visual localization algorithms determine the position and orientation from which an image has been captured, using a set of geo-referenced images or a 3D scene representation. Our new localization paradigm, named Implicit Pose Encoding (ImPosing), embeds images and camera poses into a common latent representation with 2 separate neural networks, such that we can compute a similarity score for each image-pose pair. By evaluating candidates through the latent space in a hierarchical manner, the camera position and orientation are not directly regressed but incrementally refined. Very large environments force competitors to store gigabytes of map data, whereas our method is very compact independently of the reference database size. In this paper, we describe how to effectively optimize our learned modules, how to combine them to achieve real-time localization, and demonstrate results on diverse large scale scenarios that significantly outperform prior work in accuracy and computational efficiency.