论文标题
电子带结构筛选傲慢的狄拉克点
Electronic band structure screening for Dirac points in Heuslers
论文作者
论文摘要
Heusler化合物根据化学成分和晶体结构控制了基于高度多样化和可调的特性,为各种技术应用提供了材料候选的操场。但是,在实践中,对Heusler化学空间的物理探索是不可能的,这阻碍了化学成分与所有权关系的探索。这些应用中的许多应用与移植物电子传输特性有关,这些特性嵌入其电子带结构(EBS)中。在这里,我们使用材料项目(MP)数据库创建了Heuslers数据集 - 检索化学成分及其EBS。然后,我们使用机器学习来开发一个模型,该模型通过使用自动化算法识别上述零点的素食者和其他立方化合物的组成数量与越野毛的数量,并生成化学组成和全球晶体结构特征。我们的ML模型捕获了整体趋势,并确定了重要的电子和全球晶体结构特征,但是,由于缺乏现场特定特征,ML模型遭受了显着差异。关于处理原子位点特定特征的方法的未来工作将使ML模型更好地匹配管理属性(也基于站点特定属性)的基础量子力学,并以更广义的方法捕获电子属性。
The Heusler compounds have provided a playground of material candidates for various technological applications based on their highly diverse and tunable properties, controlled by chemical composition and crystal structure. However, physical exploration of the Heusler chemical space en masse is impossible in practice, hindering the exploration of the chemical composition vs. proprieties relationship. Many of these applications are related to the Heuslers electron transport characteristics, which are embedded in their electronic band structure (EBS). Here we we created a Heuslers dataset using the Materials Project (MP) database -- retrieving both chemical composition and their EBSs. We then used machine learning to develop a model correlating the composition vs. number of Dirac points in the EBS for Heuslers and also other Cubic compounds by identifying said Dirac points using an automated algorithm as well as generating chemical composition and global crystal structure features. Our ML model captures the overall trend, as well as identifies significant electronic and global crystal structure features, however, the ML model suffered from significant variance due to the lack of site specific features. Future work on a methodology for handling atomic site specific features will allow ML models to better match the underlying quantum mechanics governing the properties (also based on site specific properties) and capture the electronic properties in a more generalized approach.