论文标题

不可分解的Cohen-Macaulay模块的同源镜对称性

Homological mirror symmetry of indecomposable Cohen-Macaulay modules for some degenerate cusp singularities

论文作者

Cho, Cheol-Hyun, Jeong, Wonbo, Kim, Kyoungmo, Rho, Kyungmin

论文摘要

Burban-Drozd表明,退化的尖尖奇异性具有驯服的Cohen-Macaulay代表性,并将所有不可分解的Cohen-Macaulay模块分类为它们。他们的主要例子之一是非分离的奇异性$ W = xyz $。另一方面,abouzaid-auroux-efimov-katzarkov-orlov表明$ w = xyz $是一条裤子的镜子。在本文中,我们调查了这些不可分解的Cohen-Macaulay模块的同源镜对称性,价格为$ xyz $。 也就是说,我们表明,一条双曲线裤子的封闭的大地测量学(带有平坦的$ \ mathbb {c} $ - 捆绑包)具有与$ xyz $的不可分解的Cohen-Macaulay模块的一对一对应关系,其中$ xyz $具有局部在局部宽敞的光谱上免费的。特别是,该信件首先是由几何$ a _ {\ infty} $ - 从$ xyz $的矩阵分解类别中的福卡亚类别类别的函数建立,而Cohen-Macaulay模块和矩阵分级之间的对应关系是由于Eisenbud所致。对于后者,我们从Burban-Drozd的分类中计算模块的显式误解,并找到相应矩阵因子化的规范形式。在续集中,我们将证明具有较高多重性的不可分解的模块对应于封闭的大地测量学的扭曲复合物。 我们还找到了等级的镜像$ 1 $ Inndecosable Cohen -Macaulay模块(频带类型)上的奇异性$ W = X^{3} + y^{2} - Xyz $作为Orbifold Sphere $ \ Mathbb {p}^p}^1_ {3,3,3,2,2,\ infty} $的封闭循环。

Burban-Drozd showed that the degenerate cusp singularities have tame Cohen-Macaulay representation type, and classified all indecomposable Cohen-Macaulay modules over them. One of their main example is the non-isolated singularity $W=xyz$. On the other hand, Abouzaid-Auroux-Efimov-Katzarkov-Orlov showed that $W=xyz$ is mirror to a pair of pants. In this paper, we investigate homological mirror symmetry of these indecomposable Cohen-Macaulay modules for $xyz$. Namely, we show that closed geodesics (with a flat $\mathbb{C}$-bundle) of a hyperbolic pair of pants have a one-to-one correspondence with indecomposable Cohen-Macaulay modules for $xyz$ with multiplicity one that are locally free on the punctured spectrum. In particular, this correspondence is established first by a geometric $A_{\infty}$-functor from the Fukaya category of the pair of pants to the matrix factorization category of $xyz$, and next by the correspondence between Cohen-Macaulay modules and matrix factorizations due to Eisenbud. For the latter, we compute explicit Macaulayfications of modules from Burban-Drozd's classification and find a canonical form of the corresponding matrix factorizations. In the sequel, we will show that indecomposable modules with higher multiplicity correspond to twisted complexes of closed geodesics. We also find mirror images of rank $1$ indecomposable Cohen-Macaulay modules (of band type) over the singularity $W = x^{3} + y^{2} - xyz$ as closed loops in the orbifold sphere $\mathbb{P}^1_{3,2,\infty}$.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源