论文标题
拓扑Langmuir-Cyclotron波
Topological Langmuir-cyclotron wave
论文作者
论文摘要
开发了一个理论框架来描述拓扑Langmuir-Cyclotron Wave(TLCW),这是一种最近在磁化等离子体中鉴定出的拓扑表面激发。作为拓扑波,TLCW在不散射复杂边界的情况下单向传播。理论上研究了TLCW作为哈密顿伪差异操作员(PDO)$ \ hat {h} $的频谱流,用于不均匀等离子体中的波浪。血浆波的Weyl量化的半古典参数被确定为电子陀螺 - 拉迪乌斯和系统的不均匀性尺度长度之间的比率。正式定义了散装哈密顿符号h的Hermitian本本征束。由于经典连续培养基中的动量空间一般是可缩合的,因此本本征束的拓扑是在动量空间上的拓扑。这与凝结的问题形成鲜明对比。经典连续培养基中本本征束的非平凡拓扑仅在相空间上存在。建立了边界同构定理,以促进在相空间中非摘要的歧管上的chern算数束的计算。它还定义了相位空间中孤立的Weyl点的拓扑充电,而无需采用任何连接。使用这些代数拓扑技术和通过福尔(Faure)制定的索引定理,严格证明是,Langmuir波 - 环境波谐振的Weyl点的非平凡拓扑会产生TLCW作为光谱流。结果表明,TLCW可以通过相空间中的倾斜迪拉克锥体忠实地建模。给出了通用倾斜相空间圆锥锥的整个PDO的分析解决方案,包括其光谱流。倾斜狄拉克锥的光谱流量指数是一个,其模式结构是变化的高斯函数。
A theoretical framework is developed to describe the Topological Langmuir-Cyclotron Wave (TLCW), a recently identified topological surface excitation in magnetized plasmas. As a topological wave, the TLCW propagates unidirectionally without scattering in complex boundaries. The TLCW is studied theoretically as a spectral flow of the Hamiltonian Pseudo-Differential-Operator (PDO) $\hat{H}$ for waves in an inhomogeneous plasma. The semi-classical parameter of the Weyl quantization for plasma waves is identified to be the ratio between electron gyro-radius and the inhomogeneity scale length of the system. Hermitian eigenmode bundles of the bulk Hamiltonian symbol H for plasma waves are formally defined. Because momentum space in classical continuous media is contractible in general, the topology of the eigenmode bundles over momentum space is trivial. This is in stark contrast to condensed matters. Nontrivial topology of the eigenmode bundles in classical continuous media only exists over phase space. A boundary isomorphism theorem is established to facilitate the calculation of Chern numbers of eigenmode bundles over non-contractible manifolds in phase space. It also defines a topological charge of an isolated Weyl point in phase space without adopting any connection. Using these algebraic topological techniques and an index theorem formulated by Faure, it is rigorously proven that the nontrivial topology at the Weyl point of the Langmuir wave-cyclotron wave resonance generates the TLCW as a spectral flow. It is shown that the TLCW can be faithfully modeled by a tilted Dirac cone in phase space. An analytical solution of the entire spectrum of the PDO of a generic tilted phase space Dirac cone, including its spectral flow, is given. The spectral flow index of a tilted Dirac cone is one, and its mode structure is a shifted Gaussian function.