论文标题

关于路边对象检测系统的数据处理管道的预先研究,用于更安全的道路基础设施

A Pre-study on Data Processing Pipelines for Roadside Object Detection Systems Towards Safer Road Infrastructure

论文作者

Yu, Yinan, Scheidegger, Samuel, Grönvall, John-Fredrik, Palm, Magnus, Svanberg, Erik, Wennerby, Johan Amoruso, Bakker, Jörg

论文摘要

单车事故是瑞典最常见的致命事故类型,在那里汽车从道路上行驶并撞到危险的路边物体。适当安装和维护防护物体(例如碰撞垫和防护轨)可能会减少此类事故的机会和严重性。此外,对危险路边物体的有效检测和管理在改善道路安全方面也起着重要作用。为了更好地理解最新的和系统的要求,在此预研究中,我们研究了数据处理管道的可行性,实施,局限性和扩展路线对象检测。特别是,我们将调查分为三个部分:感兴趣的目标,选择的传感器和算法设计。我们在这项研究中考虑的数据来源涵盖了两个共同的设置:1)道路测量机队 - Trafikverket,瑞典运输管理局和2)消费工具的年度扫描 - 使用来自Chalmers(Revere)车辆研究实验室的研究工具收集的数据。该报告的目的是调查如何针对安全的道路基础设施和瑞典的视力零实施可扩展的路边对象检测系统。

Single-vehicle accidents are the most common type of fatal accidents in Sweden, where a car drives off the road and runs into hazardous roadside objects. Proper installation and maintenance of protective objects, such as crash cushions and guard rails, may reduce the chance and severity of such accidents. Moreover, efficient detection and management of hazardous roadside objects also plays an important role in improving road safety. To better understand the state-of-the-art and system requirements, in this pre-study, we investigate the feasibility, implementation, limitations and scaling up of data processing pipelines for roadside object detection. In particular, we divide our investigation into three parts: the target of interest, the sensors of choice and the algorithm design. The data sources we consider in this study cover two common setups: 1) road surveying fleet - annual scans conducted by Trafikverket, the Swedish Transport Administration, and 2) consumer vehicle - data collected using a research vehicle from the laboratory of Resource for vehicle research at Chalmers (REVERE). The goal of this report is to investigate how to implement a scalable roadside object detection system towards safe road infrastructure and Sweden's Vision Zero.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源