论文标题

MEMSE:基于嘈杂的Memristor DNN加速器的快速MSE预测

MemSE: Fast MSE Prediction for Noisy Memristor-Based DNN Accelerators

论文作者

Kern, Jonathan, Henwood, Sébastien, Mordido, Gonçalo, Dupraz, Elsa, Aïssa-El-Bey, Abdeldjalil, Savaria, Yvon, Leduc-Primeau, François

论文摘要

回忆录使记忆中矩阵矢量乘法(MVM)的计算在高度提高深神经网络(DNN)推理加速器的能源效率方面具有巨大潜力。但是,备忘录中的计算遭受了硬件非理想性的困扰,并且会受到可能对系统性能产生负面影响的噪声来源。在这项工作中,我们理论上分析了使用Memristor横杆计算MVM的DNN的平方误差。由于有必要降低DNN模型大小,我们同时考虑了量化噪声,以及编程噪声,这是由于磁场值编程过程中的可变性所致。预先训练的DNN模型的模拟展示了分析预测的准确性。此外,所提出的方法几乎比蒙特 - 卡洛模拟快几乎两个数量级,因此可以优化实现参数以实现给定功率约束的最小误差。

Memristors enable the computation of matrix-vector multiplications (MVM) in memory and, therefore, show great potential in highly increasing the energy efficiency of deep neural network (DNN) inference accelerators. However, computations in memristors suffer from hardware non-idealities and are subject to different sources of noise that may negatively impact system performance. In this work, we theoretically analyze the mean squared error of DNNs that use memristor crossbars to compute MVM. We take into account both the quantization noise, due to the necessity of reducing the DNN model size, and the programming noise, stemming from the variability during the programming of the memristance value. Simulations on pre-trained DNN models showcase the accuracy of the analytical prediction. Furthermore the proposed method is almost two order of magnitude faster than Monte-Carlo simulation, thus making it possible to optimize the implementation parameters to achieve minimal error for a given power constraint.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源