论文标题

由基于物理学的模拟生成的合成数据对电池制造的机器学习辅助多目标优化

Machine Learning-Assisted Multi-Objective Optimization of Battery Manufacturing from Synthetic Data Generated by Physics-Based Simulations

论文作者

Duquesnoy, Marc, Liu, Chaoyue, Dominguez, Diana Zapata, Kumar, Vishank, Ayerbe, Elixabete, Franco, Alejandro A.

论文摘要

电极制造过程的优化构成了确保高质量锂离子电池(LIB)电池的最关键步骤之一,尤其是用于汽车应用。由于LIB电极制造是一个复杂的过程,涉及多个步骤和相互依存的参数,因此我们在先前的作品中表明,基于3D分解的基于物理的模型构成了非常有用的工具,可以提供有关制造过程参数对电极质地和性能的影响的见解。但是,由于与此类模型相关的高计算成本,因此其高通量应用于电极性能优化和制造参数的逆设计受到限制。在这项工作中,我们通过提出一种创新的方法来解决此问题,并在确定性机器学习(ML)辅助管道的支持下,以对LIB电极性能进行多目标优化以及其制造过程的逆设计。首先,该管道从具有较低差异序列的基于物理的模拟中生成一个合成数据集,从而可以充分代表制造参数空间。其次,生成的数据集用于训练确定性的ML模型,以实现快速的多目标优化,以识别最佳电极和要采用的制造参数以制造它。最后,该电极在实验中成功制造,证明我们的建模管道预测与物理相关。在这里,我们证明了电极曲折度因子同时最小化的管道,并最大化有效的电子电导率,活动表面积和密度,所有这些都是影响LI $^+$^+$(DE-)互相互化动力学,离子和电子传输的参数。

The optimization of the electrodes manufacturing process constitutes one of the most critical steps to ensure high-quality Lithium-Ion Battery (LIB) cells, in particular for automotive applications. Because LIB electrode manufacturing is a complex process involving multiple steps and interdependent parameters, we have shown in our previous works that 3D-resolved physics-based models constitute very useful tools to provide insights about the impact of the manufacturing process parameters on the textural and performance properties of the electrodes. However, their high-throughput application for electrode properties optimization and inverse design of manufacturing parameters is limited due to the high computational cost associated with this kind of model. In this work, we tackle this issue by proposing an innovative approach, supported by a deterministic machine learning (ML)-assisted pipeline for multi-objective optimization of LIB electrode properties and inverse design of its manufacturing process. Firstly, the pipeline generates a synthetic dataset from physics-based simulations with low discrepancy sequences, that allow to sufficiently represent the manufacturing parameters space. Secondly, the generated dataset is used to train deterministic ML models for the implementation of a fast multi-objective optimization, to identify an optimal electrode and the manufacturing parameters to adopt in order to fabricate it. Lastly, this electrode was successfully fabricated experimentally, proving that our modeling pipeline prediction is physical-relevant. Here, we demonstrate our pipeline for the simultaneous minimization of the electrode tortuosity factor and maximization of the effective electronic conductivity, the active surface area, and the density, all being parameters that affect the Li$^+$ (de-)intercalation kinetics, ionic, and electronic transport properties of the electrode.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源