论文标题
行为经济模型的整合以优化ML性能和解释性:沙盒示例
Integration of Behavioral Economic Models to Optimize ML performance and interpretability: a sandbox example
论文作者
论文摘要
本文提供了一个沙盒示例,说明了从行为经济(特别是保护动机理论)借用的模型如何在ML算法(特别是贝叶斯网络)中借用的模型可以在应用于行为数据时改善ML算法的性能和解释性。行为经济学知识以定义贝叶斯网络的体系结构的整合增加了预测的准确性11个百分点。此外,它简化了培训过程,从而使不必要的培训计算工作努力确定贝叶斯网络的最佳结构。最后,它提高了算法的明确性,避免了以前行为网络安全文献所支持的变量之间的不合逻辑关系。尽管初步且仅限于使用小型数据集训练的0ne简单模型,但我们的结果表明,行为经济学和复杂的ML模型的整合可能会为提高预测能力,培训成本和复杂ML模型的明确性提供有希望的策略。这种整合将有助于解决ML疲惫问题的科学问题,并创建具有相关科学,技术和市场影响的新的ML技术。
This paper presents a sandbox example of how the integration of models borrowed from Behavioral Economic (specifically Protection-Motivation Theory) into ML algorithms (specifically Bayesian Networks) can improve the performance and interpretability of ML algorithms when applied to Behavioral Data. The integration of Behavioral Economics knowledge to define the architecture of the Bayesian Network increases the accuracy of the predictions in 11 percentage points. Moreover, it simplifies the training process, making unnecessary training computational efforts to identify the optimal structure of the Bayesian Network. Finally, it improves the explicability of the algorithm, avoiding illogical relations among variables that are not supported by previous behavioral cybersecurity literature. Although preliminary and limited to 0ne simple model trained with a small dataset, our results suggest that the integration of behavioral economics and complex ML models may open a promising strategy to improve the predictive power, training costs and explicability of complex ML models. This integration will contribute to solve the scientific issue of ML exhaustion problem and to create a new ML technology with relevant scientific, technological and market implications.