论文标题
$ f \ left(r \ right)$ cosmology中的新分析解决方案来自Painlevé分析
New analytic solutions in $f\left( R\right) $-Cosmology from Painlevé analysis
论文作者
论文摘要
使用奇异性分析,我们研究了$ f \ left(r \ right)$ - 宇宙学中分析解决方案的集成性属性和存在。具体而言,对于某些Power-Law $ f \ left(r \右)$ - 特别感兴趣的理论,我们应用ARS算法来证明字段方程是否具有Painlevé属性。得出了幂律模型的自由参数的约束,并得出了新的分析解决方案,该解决方案是根据月桂膨胀而表达的。
Using the singularity analysis, we investigate the integrability properties and existence of analytic solutions in $f\left( R\right)$-cosmology. Specifically, for some power-law $f\left( R\right) $-theories of particular interest, we apply the ARS algorithm to prove if the field equations possess the Painlevé property. Constraints for the free parameters of the power-law models are derived, and new analytic solutions are derived, expressed in terms of Laurent expansions.