论文标题

固体电解质与碱金属电极分解界面的电阻性质

The Resistive Nature of Decomposing Interfaces of Solid Electrolytes with Alkali Metal Electrodes

论文作者

Wang, Juefan, Panchal, Abhishek A., Gautam, Gopalakrishnan Sai, Canepa, Pieremanuele

论文摘要

电解质是锂(LI)和钠(Na)-ion电池(LIBS和NIB)的关键成分。在液体电解质LIBS(NIB)中,使用Li-Metal(Na-Metal)作为阳极受到多个问题的约束,包括热跑道和易燃性,电解质泄漏以及有限的化学稳定性。大量努力致力于开发固体电解质(SES)和全稳态电池,这些电池被认为是为了减轻与易燃液体电解质接触的Li-Metal(Na-Metal)问题。但是,大多数SES,例如Li $ _3 $ PS $ _4 $,LI $ _6 $ PS $ _5 $ CL和Na $ _3 $ _3 $ ps $ _4 $易于分解对高度减少的Li-Metal和Na-metal阳极。使用第一原则计算,我们阐明了20个固体$ || $ || $ | $ | $ | $的固体接口,在李$ _3 $ _3 $ ps $ _4 $,li $ _6 $ _6 $ ps $ _5 $ _5 $ cl(和na $ _3 $ _3 $ _3 $ ps $ _4 $)之间形成的分解产物之间形成的稳定性。我们建议形成源源不断的界面所需的粘附工作是量化接口稳定性的重要描述。随后,我们通过高效率机器学习的电位(MLP)来阐明在Li-Metal阳极和所选分解产品(Li $ _3 $ _2 $ _2 $ s}和LICL)接口的原子原理。利用MLP可以在“大”界面模型(在这里具有8320个原子)上启用纳米秒长的分子动力学模拟,但与第一原理接近相似的精度。我们的模拟表明,Li-Metal和Argyrodite之间形成的接口(例如Li $ _6 $ PS $ _5 $ CL)分解产品对Li-ion Transport有抵抗力。这项研究的含义很重要,因为二进制化合物通常在Li(Na)中的附近发现了三元和季SE的化学和/或电化学分解。

A crucial ingredient in lithium (Li) and sodium (Na)-ion batteries (LIBs and NIBs) is the electrolytes. The use of Li-metal (Na-metal) as anode in liquid electrolyte LIBs (NIBs) is constrained by several issues including thermal runway and flammability, electrolyte leakage, and limited chemical stability. Considerable effort has been devoted toward the development of solid electrolytes (SEs) and all-solid-state batteries, which are presumed to mitigate some of the issues of Li-metal(Na-metal) in contact with flammable liquid electrolytes. However, most SEs, such as Li$_3$PS$_4$, Li$_6$PS$_5$Cl and Na$_3$PS$_4$ readily decompose against the highly reducing Li-metal and Na-metal anodes. Using first-principles calculations we elucidate the stability of more than 20 solid$||$solid interfaces formed between the decomposition products of Li$_3$PS$_4$, Li$_6$PS$_5$Cl (and Na$_3$PS$_4$) against the Li-metal (Na-metal) electrode. We suggest that the work of adhesion needed to form a hetereogenous interfaces is an important descriptor to quantify the stability of interfaces. Subsequently, we clarify the atomistic origins of the resistance to Li-ion transport at interfaces of the Li-metal anode and selected decomposition products (Li$_3$P, Li$_2$S} and LiCl) of SEs, via a high-fidelity machine learned potential (MLP). Utilising an MLP enables nano-second-long molecular dynamics simulations on `large' interface models (here with 8320 atoms), but with similar accuracy to first-principles approaches. Our simulations demonstrate that the interfaces formed between Li-metal and argyrodite (e.g., Li$_6$PS$_5$Cl) decomposition products are resistive to Li-ion transport. The implications of this study are important since binary compounds are commonly found in the vicinity of Li(Na)-metal upon chemical and/or electrochemical decomposition of ternary and quaternary SEs.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源