论文标题
非线性反应扩散方程和能量估计的有效量子算法
Efficient quantum algorithm for nonlinear reaction-diffusion equations and energy estimation
论文作者
论文摘要
非线性微分方程在许多领域都表现出丰富的现象,但臭名昭著的解决方案。最近,Liu等人。 [1]在条件$ r <1 $下证明了第一种耗散二次微分方程的第一种有效量子算法,其中$ r $使用$ \ ell_2 $ norm衡量非线性与耗散的比率。在这里,我们基于[1]来开发一种有效的量子算法,以用于反应扩散方程,这是一类非线性偏微分方程(PDE)。为了实现这一目标,我们改进了[1]中引入的Carleman线性化方法,以在条件$ r_d <1 $下获得更快的收敛速率,其中$ r_d $测量非线性与使用$ \ ell _ {\ ell _ {\ infty} $ norm的耗散的比率。由于$ r_d $独立于空间网格点$ n $而使用$ n $的$ r $增加,因此高维系统的标准$ r_d <1 $比$ r <1 $大得多,并且可以在近似PDE的网格中保持收敛。作为我们量子算法的应用,我们考虑了在古典物理学中具有解释的Fisher-KPP和Allen-Cahn方程。特别是,我们通过在编码其提取衍生信息的量子状态后,展示了如何估计溶液中均方根动能的方法。
Nonlinear differential equations exhibit rich phenomena in many fields but are notoriously challenging to solve. Recently, Liu et al. [1] demonstrated the first efficient quantum algorithm for dissipative quadratic differential equations under the condition $R < 1$, where $R$ measures the ratio of nonlinearity to dissipation using the $\ell_2$ norm. Here we develop an efficient quantum algorithm based on [1] for reaction-diffusion equations, a class of nonlinear partial differential equations (PDEs). To achieve this, we improve upon the Carleman linearization approach introduced in [1] to obtain a faster convergence rate under the condition $R_D < 1$, where $R_D$ measures the ratio of nonlinearity to dissipation using the $\ell_{\infty}$ norm. Since $R_D$ is independent of the number of spatial grid points $n$ while $R$ increases with $n$, the criterion $R_D<1$ is significantly milder than $R<1$ for high-dimensional systems and can stay convergent under grid refinement for approximating PDEs. As applications of our quantum algorithm we consider the Fisher-KPP and Allen-Cahn equations, which have interpretations in classical physics. In particular, we show how to estimate the mean square kinetic energy in the solution by postprocessing the quantum state that encodes it to extract derivative information.