论文标题
无碰撞食物准备的安全关键操纵
Safety-Critical Manipulation for Collision-Free Food Preparation
论文作者
论文摘要
最近的进步允许在高通量环境中自动化食物制备,但是这些机器人的成功部署需要快速,强大且最终无碰撞的行为进行计划和执行。在这项工作中,我们展示了一个新颖的框架,用于在高度详细且动态的碰撞环境中使用控制屏障功能(CBF)修改机器人操纵器的先前生成的轨迹。该方法在不断变化的环境的情况下动态重新计划了先前验证的行为,并以计算有效的方式进行。此外,该方法为由此产生的轨迹提供了严格的安全保证,并考虑了操纵器的真正潜在动力。该方法在现实世界中的全尺度机器人操作器上得到了广泛的验证,并在重新计划中的计算时间和鲁棒性方面有了很大的改善。
Recent advances allow for the automation of food preparation in high-throughput environments, yet the successful deployment of these robots requires the planning and execution of quick, robust, and ultimately collision-free behaviors. In this work, we showcase a novel framework for modifying previously generated trajectories of robotic manipulators in highly detailed and dynamic collision environments using Control Barrier Functions (CBFs). This method dynamically re-plans previously validated behaviors in the presence of changing environments -- and does so in a computationally efficient manner. Moreover, the approach provides rigorous safety guarantees of the resulting trajectories, factoring in the true underlying dynamics of the manipulator. This methodology is extensively validated on a full-scale robotic manipulator in a real-world cooking environment, and has resulted in substantial improvements in computation time and robustness over re-planning.