论文标题
$ \ mathrm {gl} _ {n}(\ mathbb {f} _ {q})$的杰出表示
Distinguished Representations of $\mathrm{GL}_{n}(\mathbb{F}_{q})$
论文作者
论文摘要
令$ \ mathrm {g} = \ mathrm {gl} _ {n}(k)$和$ \ mathrm {h} = \ mathrm {g}^σ$ for $ f for $ g \ rightArrow aga^aga^aga^$ aga aga^aga^$ a $ $ \ mathrm {g} $的表示形式,带有$ \ mathrm {h} $不变函数,是自dual的,我们证明了$ \ mathbb {f} _ {q} $的类似结果。
Let $\mathrm{G} = \mathrm{Gl}_{n}(K)$, and $\mathrm{H} = \mathrm{G}^σ$ for $σ$ an involution of the form $g\rightarrow aga^{-1}$, It is known that for $K =\mathbb{Q}_q$ any irreducible representation of $\mathrm{G}$ with an $\mathrm{H}$ invariant functional, is self dual, we prove an analogous result for $\mathbb{F}_{q}$.