论文标题
使用拓扑推理的无协调多机器人路径计划减少拥塞
Coordination-free Multi-robot Path Planning for Congestion Reduction Using Topological Reasoning
论文作者
论文摘要
我们考虑在复杂,混乱的环境中进行多机器人路径计划的问题,目的是减少环境中的整体充血,同时避免任何机器人间的交流或协调。由于缺乏通信或隐私限制,可能存在此类限制(例如,自动驾驶汽车可能不想与其他车辆甚至中央服务器共享其位置或意图)。让我们解决此问题的关键见解是通过在不同拓扑不同的类中分配路径来随机分配机器人,以降低拥挤和环境中所有机器人的整体旅行时间。我们概述了时空配置空间中拓扑不同路径的计算,并提出了将路径随机分配到机器人的方法。快速更换算法和潜在的基于字段的控制器使机器人在遵循分配的路径时避免与附近的代理发生碰撞。在这种无协调设置下,我们的仿真和实验结果表明,在最短路径上具有显着优势。
We consider the problem of multi-robot path planning in a complex, cluttered environment with the aim of reducing overall congestion in the environment, while avoiding any inter-robot communication or coordination. Such limitations may exist due to lack of communication or due to privacy restrictions (for example, autonomous vehicles may not want to share their locations or intents with other vehicles or even to a central server). The key insight that allows us to solve this problem is to stochastically distribute the robots across different routes in the environment by assigning them paths in different topologically distinct classes, so as to lower congestion and the overall travel time for all robots in the environment. We outline the computation of topologically distinct paths in a spatio-temporal configuration space and propose methods for the stochastic assignment of paths to the robots. A fast replanning algorithm and a potential field based controller allow robots to avoid collision with nearby agents while following the assigned path. Our simulation and experiment results show a significant advantage over shortest path following under such a coordination-free setup.