论文标题

原子级氧介导的2D MOS $ _2 $和MOTE $ _2 $的蚀刻

Atomic-scale Oxygen-mediated Etching of 2D MoS$_2$ and MoTe$_2$

论文作者

Åhlgren, E. Harriet, Markevich, Alexander, Scharinger, Sophie, Fickl, Bernhard, Zagler, Georg, Herterich, Felix, McEvoy, Niall, Mangler, Clemens, Kotakoski, Jani

论文摘要

某些材料比其他材料更受氧化的影响。为了阐明过渡金属金属元素中氧化引起的降解机制,单层MOS $ _2 $和MOTE $ _2 $中的化学作用在室温下以电子显微镜在室温下的电子显微镜进行了研究。在室温下,在室温下。氧化是在许多跨度材料中脱离跨度材料的主要原因,包括均等材料,包括两位数的金属材料。 MOTE $ _2 $被发现对氧气有用,从而导致大量降解超过1 $ \ times 10^{ - 7} $ torr。奇怪的是,在几乎所有表面上发现的常见碳氢化合物污染都可以显着加速损伤率,最高为40倍。与MOTE $ _2 $相反,MOS $ _2 $在氧气环境下被发现是惰性的,所有观察到的结构变化仅是由电子照射引起的,导致毛孔明确定义,其比例很高,构成了含钼纳米末端的末端。使用密度函数理论计算,提出了一种进一步的原子级机制,导致在MOTE $ _2 $中观察到的与氧相关的降解,并探索了碳在蚀刻中的作用。总之,结果为在许多领域相关的环境条件下的二维材料的氧气相关降低提供了重要的见解。

Some of the materials are more affected by oxidation than others. To elucidate the oxidation-induced degradation mechanisms in transition metal chalcogenides, the chemical effects in single layer MoS$_2$ and MoTe$_2$ were studied in situ in an electron microscope under controlled low-pressure oxygen environments at room temperature.Oxidation is the main cause of degradation of many two-dimensional materials, including transition metal dichalcogenides, under ambient conditions. MoTe$_2$ is found to be reactive to oxygen, leading to significant degradation above a pressure of 1$\times 10^{-7}$ torr. Curiously, the common hydrocarbon contamination found on practically all surfaces accelerates the damage rate significantly, by up to a factor of forty. In contrast to MoTe$_2$, MoS$_2$ is found to be inert under oxygen environment, with all observed structural changes being caused by electron irradiation only, leading to well-defined pores with high proportion of molybdenum nanowire-terminated edges. Using density functional theory calculations, a further atomic-scale mechanism leading to the observed oxygen-related degradation in MoTe$_2$ is proposed and the role of the carbon in the etching is explored. Together, the results provide an important insight into the oxygen-related deterioration of two-dimensional materials under ambient conditions relevant in many fields.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源