论文标题

大规模机器人仓库的自适应任务计划

Adaptive Task Planning for Large-Scale Robotized Warehouses

论文作者

Shi, Dingyuan, Tong, Yongxin, Zhou, Zimu, Xu, Ke, Tan, Wenzhe, Li, Hongbo

论文摘要

机器人仓库被部署以自动分发来自电子商务的大规模逻辑订单带来的数百万个项目。自动化项目分布的一个关键是计划机器人的路径,也称为任务计划,每个任务都是将带有物品的机架运送到采摘器进行处理,然后退回机架。由于时间变化的物品到达的僵硬性和高吞吐量的低效率,因此先前的解决方案不适合大规模的机器人仓库。在本文中,我们提出了一个名为TPRW的新任务计划问题,该问题旨在最大程度地减少结合整个项目分配管道的端到端Makepan,称为履行周期。从最新的路径查找方法进行的直接扩展无法解决TPRW问题,因为它们无法适应实现周期的瓶颈变化。作为回应,我们提出了有效的自适应任务计划,这是一个带有时间变化的物品到达的大规模机器人仓库的框架。它可以自适应地选择架子,可以通过加固学习在每个时间戳上实现,这考虑了满足周期的随时间变化的瓶颈。然后,它找到了机器人运输所选架子的路径。该框架对时间和内存都采用一系列有效的优化来处理大规模的项目吞吐量。对合成数据和实际数据的评估都表明,有效性的$ 37.1 \%$和$ 75.5 \%$的效率比最先进的效率提高。

Robotized warehouses are deployed to automatically distribute millions of items brought by the massive logistic orders from e-commerce. A key to automated item distribution is to plan paths for robots, also known as task planning, where each task is to deliver racks with items to pickers for processing and then return the rack back. Prior solutions are unfit for large-scale robotized warehouses due to the inflexibility to time-varying item arrivals and the low efficiency for high throughput. In this paper, we propose a new task planning problem called TPRW, which aims to minimize the end-to-end makespan that incorporates the entire item distribution pipeline, known as a fulfilment cycle. Direct extensions from state-of-the-art path finding methods are ineffective to solve the TPRW problem because they fail to adapt to the bottleneck variations of fulfillment cycles. In response, we propose Efficient Adaptive Task Planning, a framework for large-scale robotized warehouses with time-varying item arrivals. It adaptively selects racks to fulfill at each timestamp via reinforcement learning, accounting for the time-varying bottleneck of the fulfillment cycles. Then it finds paths for robots to transport the selected racks. The framework adopts a series of efficient optimizations on both time and memory to handle large-scale item throughput. Evaluations on both synthesized and real data show an improvement of $37.1\%$ in effectiveness and $75.5\%$ in efficiency over the state-of-the-arts.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源