论文标题
太阳风湍流中含能量涡流的各向同性和演变:帕克太阳探针,Helios 1,Ace,Wind和Voyager 1
Isotropization and Evolution of Energy-Containing Eddies in Solar Wind Turbulence: Parker Solar Probe, Helios 1, ACE, WIND, and Voyager 1
论文作者
论文摘要
We examine the radial evolution of correlation lengths perpendicular (\(λ_C^{\perp}\)) and parallel (\(λ_C^{\parallel}\)) to the magnetic-field direction, computed from solar wind magnetic-field data measured by Parker Solar Probe (PSP) during its first eight orbits, Helios 1, Advanced Composition Explorer (ACE), WIND,和Voyager 1号航天器。相关长度由间隔的比对角度分组;磁场和太阳风速度向量之间的角度(\(θ_ {\ rm bv} \))。并行和垂直角通道对应于角度\(0^{\ circ}〜<〜θ_ {\ rm bv} 〜40^{\ circ} \)和\(50^{\ circ} 〜θ_我们在0.40〜Au内观察到内部层中的各向异性,并在0.10〜Au处使用\(λ_c^{\ parallel} /λ_C^{\ perp} \ aid 0.75 \)。这种各向异性会随着地态为中心的距离增加,相关长度大致在1〜AU内。 ACE和风支持各向异性的反转,因此1〜Au处的\(λ_c^{\ Parallel} /λ_C^{\ perp} \左右1.29 \)。尽管Voyager数据集中的少量平行间隔无法得出明确的结论,但该比率似乎没有显着变化。这项研究提供了有关地球层中大型,最有能力相互作用的湍流波动的径向演变的见解。我们还强调了在使用这些数据研究湍流的径向演化时,随着航天器接近太阳的PSP测量方向的变化的重要性。这可能证明对于理解内气球中太阳风的更复杂动力学至关重要,并且可以帮助改善相关的模拟。
We examine the radial evolution of correlation lengths perpendicular (\(λ_C^{\perp}\)) and parallel (\(λ_C^{\parallel}\)) to the magnetic-field direction, computed from solar wind magnetic-field data measured by Parker Solar Probe (PSP) during its first eight orbits, Helios 1, Advanced Composition Explorer (ACE), WIND, and Voyager 1 spacecraft. Correlation lengths are grouped by an interval's alignment angle; the angle between the magnetic-field and solar wind velocity vectors (\(Θ_{\rm BV}\)). Parallel and perpendicular angular channels correspond to angles \(0^{\circ}~<~Θ_{\rm BV}~<~40^{\circ}\) and \(50^{\circ}~<~Θ_{\rm BV}~<~90^{\circ}\), respectively. We observe an anisotropy in the inner heliosphere within 0.40~au, with \(λ_C^{\parallel} / λ_C^{\perp} \approx 0.75\) at 0.10~au. This anisotropy reduces with increasing heliocentric distance and the correlation lengths roughly isotropize within 1~au. Results from ACE and WIND support a reversal of the anisotropy, such that \(λ_C^{\parallel} /λ_C^{\perp} \approx 1.29\) at 1~au. The ratio does not appear to change significantly beyond 1~au, although the small number of parallel intervals in the Voyager dataset precludes unambiguous conclusions from being drawn. This study provides insights regarding the radial evolution of the large, most energetic interacting turbulent fluctuations in the heliosphere. We also emphasize the importance of tracking the changes in sampling direction in PSP measurements as the spacecraft approaches the Sun, when using these data to study the radial evolution of turbulence. This can prove to be vital in understanding the more complex dynamics of the solar wind in the inner heliosphere and can assist in improving related simulations.