论文标题

参数化字符串问题的动态数据结构

Dynamic data structures for parameterized string problems

论文作者

Olkowski, Jędrzej, Pilipczuk, Michał, Rychlicki, Mateusz, Węgrzycki, Karol, Zych-Pawlewicz, Anna

论文摘要

我们重新访问参数化复杂性领域中考虑的经典弦问题,并通过动态数据结构的镜头进行研究。也就是说,我们的目标不是要求有效地求解给定实例的静态算法,而是设计一个数据结构,该数据结构有效地维护解决方案,或者在实例中的更新时报告了解决方案。 我们首先考虑最接近的字符串问题,我们为其设计具有摊销更新时间的随机动态数据结构$ d^{\ mathcal {o}(d)} $和$ | =σ|^{\ Mathcal {o}(o}(d)} $,如果$σ$是Alphabet和$ d $,则为Alphabet和$ D $的最大值。这些是通过将已知的静态方法与颜色编码结合到最接近的字符串的结合来获得的。 接下来,我们注意到Frandsen等人的结果。 ACM'97]可以轻松地推断出一个元理论,该元理论为参数化的字符串问题提供动态数据结构,其中具有$ \ Mathcal {o}的最差更新时间(\ log \ log \ log \ log \ log n)$,其中$ k $是有问题的参数,$ n $是字符串的长度。我们通过提供有关问题不相交因素和编辑距离的数据结构来展示此元理论的实用性。我们还为这些问题提供了明确的数据结构,其中最糟糕的更新时间$ \ mathcal {o}(k2^{k} \ log \ log \ log \ log n)$和$ \ mathcal {o}(k^2 \ log \ log \ log log n)$。最后,我们讨论了如何使用Amarilli等人引入的较低方法来证明,对于脱节因素,获得更新时间$ \ Mathcal {O}(f(k))$,并且编辑距离不太可能是为了使参数$ k $的恒定价值用于恒定值。

We revisit classic string problems considered in the area of parameterized complexity, and study them through the lens of dynamic data structures. That is, instead of asking for a static algorithm that solves the given instance efficiently, our goal is to design a data structure that efficiently maintains a solution, or reports a lack thereof, upon updates in the instance. We first consider the Closest String problem, for which we design randomized dynamic data structures with amortized update times $d^{\mathcal{O}(d)}$ and $|Σ|^{\mathcal{O}(d)}$, respectively, where $Σ$ is the alphabet and $d$ is the assumed bound on the maximum distance. These are obtained by combining known static approaches to Closest String with color-coding. Next, we note that from a result of Frandsen et al.~[J. ACM'97] one can easily infer a meta-theorem that provides dynamic data structures for parameterized string problems with worst-case update time of the form $\mathcal{O}(\log \log n)$, where $k$ is the parameter in question and $n$ is the length of the string. We showcase the utility of this meta-theorem by giving such data structures for problems Disjoint Factors and Edit Distance. We also give explicit data structures for these problems, with worst-case update times $\mathcal{O}(k2^{k}\log \log n)$ and $\mathcal{O}(k^2\log \log n)$, respectively. Finally, we discuss how a lower bound methodology introduced by Amarilli et al.~[ICALP'21] can be used to show that obtaining update time $\mathcal{O}(f(k))$ for Disjoint Factors and Edit Distance is unlikely already for a constant value of the parameter $k$.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源