论文标题

神经网络最佳反馈控制具有保证的局部稳定性

Neural Network Optimal Feedback Control with Guaranteed Local Stability

论文作者

Nakamura-Zimmerer, Tenavi, Gong, Qi, Kang, Wei

论文摘要

最近的研究表明,监督学习可能是为高维非线性动态系统设计近距离反馈控制器的有效工具。但是神经网络控制器的行为仍然不太了解。特别是,一些具有高测试精度的神经网络甚至无法局部稳定动态系统。为了应对这一挑战,我们提出了几种新型的神经网络体系结构,我们显示出保证局部渐近稳定性,同时保留了学习最佳反馈政策半全球的近似能力。通过对两个高维非线性最佳控制问题的数值模拟,将所提出的体系结构与标准的神经网络反馈控制器进行了比较:稳定不稳定的汉堡型部分偏差方程,以及无人驾驶汽车的高度和课程跟踪。模拟表明,即使经过训练,标准神经网络也可能无法稳定动力学,而所提出的架构始终至少在本地稳定,并且可以实现近乎最佳的性能。

Recent research shows that supervised learning can be an effective tool for designing near-optimal feedback controllers for high-dimensional nonlinear dynamic systems. But the behavior of neural network controllers is still not well understood. In particular, some neural networks with high test accuracy can fail to even locally stabilize the dynamic system. To address this challenge we propose several novel neural network architectures, which we show guarantee local asymptotic stability while retaining the approximation capacity to learn the optimal feedback policy semi-globally. The proposed architectures are compared against standard neural network feedback controllers through numerical simulations of two high-dimensional nonlinear optimal control problems: stabilization of an unstable Burgers-type partial differential equation, and altitude and course tracking for an unmanned aerial vehicle. The simulations demonstrate that standard neural networks can fail to stabilize the dynamics even when trained well, while the proposed architectures are always at least locally stabilizing and can achieve near-optimal performance.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源