论文标题

交通环境意​​识到数据扩展用于自动驾驶中稀有对象检测

Traffic Context Aware Data Augmentation for Rare Object Detection in Autonomous Driving

论文作者

Li, Naifan, Song, Fan, Zhang, Ying, Liang, Pengpeng, Cheng, Erkang

论文摘要

检测稀有物体(例如,交通锥,交通桶和交通警告三角形)是提高自动驾驶安全性的重要感知任务。对此类模型的培训通常需要大量的注释数据,这些数据既昂贵又耗时。为了解决上述问题,新兴的方法是应用数据扩展以自动生成无成本的培训样本。在这项工作中,我们提出了一项有关简单复制数据增强的系统研究,以实现自动驾驶中罕见的对象检测。具体而言,引入了本地自适应实例级图像转换,以生成从源域到目标域的逼真的稀有对象掩模。此外,流量场景上下文被用来指导稀有物体的口罩的放置。为此,我们的数据增强通过利用本地和全球一致性来生成具有高质量和现实特征的培训数据。此外,我们构建了一个新的数据集,稀有对象数据集(ROD),构成了10K培训图像,4K验证图像和相应的标签,这些标签具有不同的自动驾驶方案。 ROD上的实验表明,我们的方法在稀有物体检测方面取得了有希望的结果。我们还提出了一项详尽的研究,以说明基于局部自适应和全球限制因素的副本数据增强的有效性,以实现罕见对象检测。数据,开发套件和ROD的更多信息可在线获得:\ url {https://nullmax-vision.github.io}。

Detection of rare objects (e.g., traffic cones, traffic barrels and traffic warning triangles) is an important perception task to improve the safety of autonomous driving. Training of such models typically requires a large number of annotated data which is expensive and time consuming to obtain. To address the above problem, an emerging approach is to apply data augmentation to automatically generate cost-free training samples. In this work, we propose a systematic study on simple Copy-Paste data augmentation for rare object detection in autonomous driving. Specifically, local adaptive instance-level image transformation is introduced to generate realistic rare object masks from source domain to the target domain. Moreover, traffic scene context is utilized to guide the placement of masks of rare objects. To this end, our data augmentation generates training data with high quality and realistic characteristics by leveraging both local and global consistency. In addition, we build a new dataset, Rare Object Dataset (ROD), consisting 10k training images, 4k validation images and the corresponding labels with a diverse range of scenarios in autonomous driving. Experiments on ROD show that our method achieves promising results on rare object detection. We also present a thorough study to illustrate the effectiveness of our local-adaptive and global constraints based Copy-Paste data augmentation for rare object detection. The data, development kit and more information of ROD are available online at: \url{https://nullmax-vision.github.io}.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源