论文标题
用多模式可穿戴传感器和机器学习评估疲劳
Assessing Fatigue with Multimodal Wearable Sensors and Machine Learning
论文作者
论文摘要
储层计算是预测湍流的有力工具,其简单的架构具有处理大型系统的计算效率。然而,其实现通常需要完整的状态向量测量和系统非线性知识。我们使用非线性投影函数将系统测量扩展到高维空间,然后将其输入到储层中以获得预测。我们展示了这种储层计算网络在时空混沌系统上的应用,该系统模拟了湍流的若干特征。我们表明,使用径向基函数作为非线性投影器,即使只有部分观测并且不知道控制方程,也能稳健地捕捉复杂的系统非线性。最后,我们表明,当测量稀疏、不完整且带有噪声,甚至控制方程变得不准确时,我们的网络仍然可以产生相当准确的预测,从而为实际湍流系统的无模型预测铺平了道路。
Fatigue is a loss in cognitive or physical performance due to physiological factors such as insufficient sleep, long work hours, stress, and physical exertion. It adversely affects the human body and can slow reaction times, reduce attention, and limit short-term memory. Hence, there is a need to monitor a person's state to avoid extreme fatigue conditions that can result in physiological complications. However, tools to understand and assess fatigue are minimal. This paper primarily focuses on building an experimental setup that induces cognitive fatigue (CF) and physical fatigue (PF) through multiple cognitive and physical tasks while simultaneously recording physiological data. First, we built a prototype sensor suit embedded with numerous physiological sensors for easy use during data collection. Second, participants' self-reported visual analog scores (VAS) are reported after each task to confirm fatigue induction. Finally, an evaluation system is built that utilizes machine learning (ML) models to detect states of CF and PF from sensor data, thus providing an objective measure. Our methods beat state-of-the-art approaches, where Random Forest performs the best in detecting PF with an accuracy of 80.5% while correctly predicting the true PF condition 88% of the time. On the other hand, the long short-term memory (LSTM) recurrent neural network produces the best results in detecting CF in the subjects (with 84.1% accuracy, 0.9 recall).