论文标题
流媒体不稳定性不能在压降中从MM大小的晶粒中形成行星。
The Streaming Instability Cannot Form Planetesimals from mm-size Grains in Pressure Bumps
论文作者
论文摘要
我们提供证据表明,流媒体不稳定性(SI)不太可能从轴对称压力凸起内部的MM晶粒形成行星。到目前为止,我们对SI进行了最大的模拟(700万个CPU小时),包括带有MM晶粒的大片磁盘,太阳能粉尘与气体比($ Z = 0.01 $)以及在粒子层中不会引起重力不稳定(GI)的最大压力凸起。我们使用$ 1000/h $的高分辨率来解决尽可能多的不稳定模式。该模拟产生了一个长寿命的粒子过度密度,远远超过了SI标准(即,如果在磁盘的扩展区域内存在这些条件,则会发生强大的结块,在磁盘上存在强大的固体丰度。但是我们没有观察到。可能的原因是,粒子穿过高$ z/π$区域($ t _ {\ rm cross} $)的时间比Si的增长时间尺度($ t _ {\ rm rm grow} $)短。我们通过Si提出了一个针对行星形成的额外标准 - $ t _ {\ rm cross}> t _ {\ rm grow} $。我们表明,任何比这次运行中的大的撞击都会由GI而不是SI形成行星。我们的结果显着限制了行星形成的途径:原始磁盘经常形成大于1 〜mm的晶粒,或者在轴对称压力凸起中不会由SI形成行星。由于足够大以诱导GI的颠簸可能是Rossby-Wave不稳定的,因此我们建议MM晶粒只能在涡流中形成行星。
We present evidence that it is unlikely that the streaming instability (SI) can form planetesimals from mm grains inside axisymmetric pressure bumps. We conducted the largest simulation of the SI so far (7 million CPU hours), consisting of a large slice of the disk with mm grains, a solar-like dust-to-gas ratio ($Z = 0.01$), and the largest pressure bump that does not cause gravitational instability (GI) in the particle layer. We used a high resolution of $1000/H$ to resolve as many SI unstable modes as possible. The simulation produced a long-lived particle over-density far exceeding the SI criteria (i.e., a critical solid abundance to headwind parameter ratio $Z/Π$) where strong clumping would occur if these conditions were present over an extended region of the disk; yet we observed none. The likely reason is that the time it takes particles to cross the high-$Z/Π$ region ($t_{\rm cross}$) is shorter than the growth timescale of the SI ($t_{\rm grow}$). We propose an added criterion for planetesimal formation by the SI -- that $t_{\rm cross} > t_{\rm grow}$. We show that any bump larger than the one in this run would form planetesimals by the GI instead of the SI. Our results significantly restrict the pathways to planet formation: Either protoplanetary disks regularly form grains larger than 1~mm, or planetesimals do not form by the SI in axisymmetric pressure bumps. Since bumps large enough to induce the GI are likely Rossby-wave unstable, we propose that mm grains may only form planetesimals in vortices.