论文标题
基于(非)卤化的PBDB-T和Y系列的有机太阳能电池混合物中的三重态激子和相关效率限制途径
Triplet Excitons and associated Efficiency-Limiting Pathways in Organic Solar Cell Blends based on (Non-) Halogenated PBDB-T and Y-Series
论文作者
论文摘要
在过去几年中,有机光伏(OPV)的巨大进展在很大程度上是通过非富勒烯受体(NFAS)的发展实现的,而现在的功率转换效率现在已接近20%。为了进一步提高设备性能,必须确定和最小化损失机制。已知三胞胎状态会对设备的性能产生不利影响,因为它们可以在负责非辐射损失甚至设备降解的低洼状态上形成能量捕获的激子。长期以来,OPV材料的卤素化已被用于调整能级并增强开路电压。然而,对三胞胎激子重组的影响在很大程度上没有探索。使用光致发光的互补自旋敏感方法检测到的磁共振(PLDMR)和瞬态电子顺磁共振(TREPR),通过瞬时吸收和量子化学计算,我们在OPV中使用PBDB-T,PM6和pm7的Y6中的OPV混合物中的OPV中的Instavel Incravel Incravel Incravel Inclavel Inceciton途径。所有混合物都揭示了通过非临界孔后转移填充的NFA上的三重态激子,并通过与卤素的供体进行混合,也通过自旋轨道耦合驱动驱动的间间交叉。在所有测试过的太阳能电池吸收膜中识别这些三胞胎地层途径,突显了未开发的电荷产生潜力,以进一步提高高原OPV效率。
The great progress in organic photovoltaics (OPV) over the past few years has been largely achieved by the development of non-fullerene acceptors (NFAs), with power conversion efficiencies now approaching 20%. To further improve device performance, loss mechanisms must be identified and minimized. Triplet states are known to adversely affect device performance, since they can form energetically trapped excitons on low-lying states that are responsible for non-radiative losses or even device degradation. Halogenation of OPV materials has long been employed to tailor energy levels and to enhance open circuit voltage. Yet, the influence on recombination to triplet excitons has been largely unexplored. Using the complementary spin-sensitive methods of photoluminescence detected magnetic resonance (PLDMR) and transient electron paramagnetic resonance (trEPR) corroborated by transient absorption and quantum-chemical calculations, we unravel exciton pathways in OPV blends employing the polymer donors PBDB-T, PM6 and PM7 together with NFAs Y6 and Y7. All blends reveal triplet excitons on the NFA populated via non-geminate hole back transfer and, in blends with halogenated donors, also by spin-orbit coupling driven intersystem crossing. Identifying these triplet formation pathways in all tested solar cell absorber films highlights the untapped potential for improved charge generation to further increase plateauing OPV efficiencies.