论文标题

对部分和开放式域的适应性的受控产生的未见断层

Controlled Generation of Unseen Faults for Partial and Open-Partial Domain Adaptation

论文作者

Rombach, Katharina, Michau, Gabriel, Fink, Olga

论文摘要

由于培训和测试数据分布之间的域移动,新的操作条件可能会导致故障诊断模型的大量性能下降。尽管已经提出了几种域的适应方法来克服此类域移位,但如果两个域中表示的故障类别不相同,则其应用是有限的。为了使训练有素的模型在两个不同领域之间具有更好的可传递性,尤其是在两个域之间仅共享健康数据类别的设置中,我们为基于与Wasserstein Gan产生不同的故障签名的部分和开放式域适应的新框架。所提出的框架的主要贡献是具有两个主要不同特征的受控合成断层数据生成。首先,所提出的方法使目标域中只能访问目标域中的健康样本和源域中的错误样品,从而在目标域中生成未观察到的故障类型。其次,可以控制故障生成以精确生成不同的故障类型和故障严重程度。所提出的方法特别适合于极端域的自适应设置,这些设置在复杂和关键的系统中特别相关,在复杂和安全关键系统的背景下,这两个域之间仅共享一个类。我们评估了针对两个轴承故障诊断案例研究的部分和开放式域适应任务的拟议框架。我们在不同标签空间设置中进行的实验展示了所提出的框架的多功能性。与给定较大的域间隙相比,提出的方法提供了优越的结果。

New operating conditions can result in a significant performance drop of fault diagnostics models due to the domain shift between the training and the testing data distributions. While several domain adaptation approaches have been proposed to overcome such domain shifts, their application is limited if the fault classes represented in the two domains are not the same. To enable a better transferability of the trained models between two different domains, particularly in setups where only the healthy data class is shared between the two domains, we propose a new framework for Partial and Open-Partial domain adaptation based on generating distinct fault signatures with a Wasserstein GAN. The main contribution of the proposed framework is the controlled synthetic fault data generation with two main distinct characteristics. Firstly, the proposed methodology enables to generate unobserved fault types in the target domain by having only access to the healthy samples in the target domain and faulty samples in the source domain. Secondly, the fault generation can be controlled to precisely generate distinct fault types and fault severity levels. The proposed method is especially suited in extreme domain adaption settings that are particularly relevant in the context of complex and safety-critical systems, where only one class is shared between the two domains. We evaluate the proposed framework on Partial as well as Open-Partial domain adaptation tasks on two bearing fault diagnostics case studies. Our experiments conducted in different label space settings showcase the versatility of the proposed framework. The proposed methodology provided superior results compared to other methods given large domain gaps.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源