论文标题
Buchwald-Hartwig和Suzuki-Miyaura反应产生预测的多模式变压器模型
Multimodal Transformer-based Model for Buchwald-Hartwig and Suzuki-Miyaura Reaction Yield Prediction
论文作者
论文摘要
预测化学反应的产量百分比在许多方面都有用,例如通过优先考虑高预测产率来减少湿lab实验。在这项工作中,我们研究了使用多种类型输入来预测化学反应产量的使用。我们使用简化的分子输入线路进入系统(Smiles)以及计算的化学描述符作为模型输入。该模型由训练的双向变压器编码器(BERT)和具有回归头的多层感知器(MLP)组成,以预测产量。我们在两个高吞吐量实验(HTE)数据集中进行了实验,以实现Buchwald-Hartwig和Suzuki-Miyaura反应。与仅使用微笑或化学描述符作为输入的系统相比,实验显示了两个数据集的预测的改进。我们还测试了该模型在Buchwald-Hartwig的样本外数据集拆分上的性能,并与最先进的结果相当。除了预测产量外,我们还证明了该模型建议最佳(最高产量)反应条件的能力。该模型能够提出达到达到最佳收益率的94%的条件。这证明该模型在无需昂贵的实验的情况下就可以在湿实验室中获得最佳结果。
Predicting the yield percentage of a chemical reaction is useful in many aspects such as reducing wet-lab experimentation by giving the priority to the reactions with a high predicted yield. In this work we investigated the use of multiple type inputs to predict chemical reaction yield. We used simplified molecular-input line-entry system (SMILES) as well as calculated chemical descriptors as model inputs. The model consists of a pre-trained bidirectional transformer-based encoder (BERT) and a multi-layer perceptron (MLP) with a regression head to predict the yield. We experimented on two high throughput experimentation (HTE) datasets for Buchwald-Hartwig and Suzuki-Miyaura reactions. The experiments show improvements in the prediction on both datasets compared to systems using only SMILES or chemical descriptors as input. We also tested the model's performance on out-of-sample dataset splits of Buchwald-Hartwig and achieved comparable results with the state-of-the-art. In addition to predicting the yield, we demonstrated the model's ability to suggest the optimum (highest yield) reaction conditions. The model was able to suggest conditions that achieves 94% of the optimum reported yields. This proves the model to be useful in achieving the best results in the wet lab without expensive experimentation.