论文标题
无相的ZX图是CSS代码(...或如何以图形方式拨出表面代码)
Phase-free ZX diagrams are CSS codes (...or how to graphically grok the surface code)
论文作者
论文摘要
在本文中,我们演示了无相ZX图之间的直接对应关系,这是代表和操纵Qubits上某些线性图的图形表示法,以及Calderbank-s-s-s-s-s-s-s-s-s-s-s-codes(CSS)代码,这是一个大型量子误差系列,该量子纠正了从经典代码中构建的代码,例如,stateane代码,例如stateane代码,表面代码,颜色,彩色代码。 CSS代码的稳定器具有特别好的结构,该结构是由一对正交$ \ mathbb f_2 $ - 线性子空间或最大CSS代码,单个子空间及其正式填充而产生的。另一方面,可以始终将无相的ZX图有效地简化为正常形式,该形式由$ \ mathbb f_2 $ - 线性子空间的基础元素给出。在这里,我们将证明,这两种描述量子状态的方法是$ \ mathbb f_2 $ -linear-linear子空间$ s $实际上是相同的。也就是说,由$ s $生成的最大CSS代码修复了量子状态,其ZX正常形式也由$ S $给出。 这种见解使我们立即将最大CSS代码的稳定器转换为描述其相关状态的ZX图。我们表明,我们可以通过“弯曲线”将此翻译扩展到任何(可能是非最大)CSS代码的稳定器和逻辑运算符。为了证明这种翻译的实用性,我们简单地描绘了表面代码的图片,以及完全图形的衍生物,即物理晶格手术操作对逻辑Qubits空间的作用,完成了De Beudrap和Horsman发起的晶格手术的ZX表现。
In this paper, we demonstrate a direct correspondence between phase-free ZX diagrams, a graphical notation for representing and manipulating a certain class of linear maps on qubits, and Calderbank-Shor-Steane (CSS) codes, a large family of quantum error correcting codes constructed from classical codes, including for example the Steane code, surface codes, and colour codes. The stabilisers of a CSS code have an especially nice structure arising from a pair of orthogonal $\mathbb F_2$-linear subspaces, or in the case of maximal CSS codes, a single subspace and its orthocomplement. On the other hand, phase-free ZX diagrams can always be efficiently reduced to a normal form given by the basis elements of an $\mathbb F_2$-linear subspace. Here, we will show that these two ways of describing a quantum state by an $\mathbb F_2$-linear subspace $S$ are in fact the same. Namely, the maximal CSS code generated by $S$ fixes the quantum state whose ZX normal form is also given by $S$. This insight gives us an immediate translation from stabilisers of a maximal CSS code into a ZX diagram describing its associated state. We show that we can extend this translation to stabilisers and logical operators of any (possibly non-maximal) CSS code by "bending wires". To demonstrate the utility of this translation, we give a simple picture of the surface code and a fully graphical derivation of the action of physical lattice surgery operations on the space of logical qubits, completing the ZX presentation of lattice surgery initiated by de Beudrap and Horsman.