论文标题

来自单个视频的物理参数推断的神经隐式表示

Neural Implicit Representations for Physical Parameter Inference from a Single Video

论文作者

Hofherr, Florian, Koestler, Lukas, Bernard, Florian, Cremers, Daniel

论文摘要

神经网络最近已用于分析各种物理系统并识别潜在的动态。尽管现有方法取得了令人印象深刻的结果,但它们受到对培训数据的强烈需求以及对分布数据的较弱的概括能力的限制。为了克服这些局限性,在这项工作中,我们建议将外观建模的神经隐式表示与神经普通微分方程(ODE)相结合,以建模物理现象,以获得可以直接从视觉观察结果识别的动态场景表示。我们提出的模型结合了几个独特的优势:(i)与需要大型培训数据集的现有方法相反,我们只能从一个视频中识别物理参数。 (ii)使用神经隐式表示可以处理高分辨率视频和综合照片现实图像。 (iii)嵌入式神经ODE具有已知的参数形式,可识别可解释的物理参数,并且(iv)状态空间中的长期预测。 (v)此外,具有修改的物理参数的新型场景的光真实渲染也是可能的。

Neural networks have recently been used to analyze diverse physical systems and to identify the underlying dynamics. While existing methods achieve impressive results, they are limited by their strong demand for training data and their weak generalization abilities to out-of-distribution data. To overcome these limitations, in this work we propose to combine neural implicit representations for appearance modeling with neural ordinary differential equations (ODEs) for modelling physical phenomena to obtain a dynamic scene representation that can be identified directly from visual observations. Our proposed model combines several unique advantages: (i) Contrary to existing approaches that require large training datasets, we are able to identify physical parameters from only a single video. (ii) The use of neural implicit representations enables the processing of high-resolution videos and the synthesis of photo-realistic images. (iii) The embedded neural ODE has a known parametric form that allows for the identification of interpretable physical parameters, and (iv) long-term prediction in state space. (v) Furthermore, the photo-realistic rendering of novel scenes with modified physical parameters becomes possible.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源