论文标题

dmradio-m $^3 $的预计灵敏度:搜索$ 1 \,μ$ ev以下的QCD轴

Projected Sensitivity of DMRadio-m$^3$: A Search for the QCD Axion Below $1\,μ$eV

论文作者

DMRadio Collaboration, Brouwer, L., Chaudhuri, S., Cho, H. -M., Corbin, J., Craddock, W., Dawson, C. S., Droster, A., Foster, J. W., Fry, J. T., Graham, P. W., Henning, R., Irwin, K. D., Kadribasic, F., Kahn, Y., Keller, A., Kolevatov, R., Kuenstner, S., Leder, A. F., Li, D., Ouellet, J. L., Pappas, K., Phipps, A., Rapidis, N. M., Safdi, B. R., Salemi, C. P., Simanovskaia, M., Singh, J., van Assendelft, E. C., van Bibber, K., Wells, K., Winslow, L., Wisniewski, W. J., Young, B. A.

论文摘要

QCD轴轴是解释宇宙深色物质的最引人注目的候选者之一。凭借其极小的质量($ \ ll 1 \,\ mathrm {ev}/c^2 $),Axion暗物质作为经典字段而不是粒子相互作用。它与光子与光子的耦合会导致对麦克斯韦方程的修改,该方程可以通过非常敏感的读数电路进行测量。 dmradio-m $^3 $是使用$> 4 $ t静态磁场,同轴电感拾音器,可调LC谐振器和DC-Squid读数的下一代搜索$ 1 \,μ$ eV以下的轴线暗物质的下一代搜索。它旨在在$ 20 \,\ mathrm {nev} \ sillesim m_ac^2 \ lyseSim 800 \,\ mathrm {nev} $($ 5 \,\ Mathrm {mhz} <200 \ 200 \,\,\,\,\,\ m m i} $)上搜索QCD Axion暗物质。主要的科学目标旨在实现$ M_AC^2 \以上的DFSZ敏感性,大约120 $ nev(30 MHz),其二级科学目标是将KSVZ轴探测至$ M_AC^2 \ oft40 \,\ Mathrm {nev} $(10 MHz)。

The QCD axion is one of the most compelling candidates to explain the dark matter abundance of the universe. With its extremely small mass ($\ll 1\,\mathrm{eV}/c^2$), axion dark matter interacts as a classical field rather than a particle. Its coupling to photons leads to a modification of Maxwell's equations that can be measured with extremely sensitive readout circuits. DMRadio-m$^3$ is a next-generation search for axion dark matter below $1\,μ$eV using a $>4$ T static magnetic field, a coaxial inductive pickup, a tunable LC resonator, and a DC-SQUID readout. It is designed to search for QCD axion dark matter over the range $20\,\mathrm{neV}\lesssim m_ac^2\lesssim 800\,\mathrm{neV}$ ($5\,\mathrm{MHz}<ν<200\,\mathrm{MHz}$). The primary science goal aims to achieve DFSZ sensitivity above $m_ac^2\approx 120$ neV (30 MHz), with a secondary science goal of probing KSVZ axions down to $m_ac^2\approx40\,\mathrm{neV}$ (10 MHz).

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源