论文标题

Triformer:长序列多变量时间序列预测的三角形,可变特异性的专注

Triformer: Triangular, Variable-Specific Attentions for Long Sequence Multivariate Time Series Forecasting--Full Version

论文作者

Cirstea, Razvan-Gabriel, Guo, Chenjuan, Yang, Bin, Kieu, Tung, Dong, Xuanyi, Pan, Shirui

论文摘要

各种现实世界的应用程序都依靠未来的信息来做出决策,因此要求有效,准确的长序列多元时间序列序列预测。尽管最近基于注意力的预测模型在捕获长期依赖方面表现出强大的能力,但它们仍然受到两个关键局限性。首先,规范的自我注意力具有二次复杂性W.R.T.输入时间序列长度,因此效率短。其次,不同的变量的时间序列通常具有不同的时间动力学,现有研究无法捕获,因为它们使用相同的模型参数空间,例如投影矩阵,用于所有变量的时间序列,因此准确性不足。为了确保高效率和准确性,我们提出了三角形的三角形,这是一种三角形,可变的注意力。 (i)线性复杂性:我们引入了具有线性复杂性的新颖贴片注意力。当堆叠斑块注意的多层时,提出了三角形结构,以使层呈指数缩小,从而保持线性复杂性。 (ii)可变特异性参数:我们提出了一种轻量级方法,以启用不同变量时间序列的不同模型参数集,以提高准确性,而不会损害效率和内存使用情况。来自多个领域的四个数据集上的有力经验证据证明了我们的设计选择是合理的,它表明Triformer优于最先进的方法W.R.T.精度和效率。这是“ triformer:长序列多元时间序列预测的三角形,可变特异性注意”的扩展版本,出现在IJCAI 2022 [Cirstea等,2022a]中,包括其他实验结果。

A variety of real-world applications rely on far future information to make decisions, thus calling for efficient and accurate long sequence multivariate time series forecasting. While recent attention-based forecasting models show strong abilities in capturing long-term dependencies, they still suffer from two key limitations. First, canonical self attention has a quadratic complexity w.r.t. the input time series length, thus falling short in efficiency. Second, different variables' time series often have distinct temporal dynamics, which existing studies fail to capture, as they use the same model parameter space, e.g., projection matrices, for all variables' time series, thus falling short in accuracy. To ensure high efficiency and accuracy, we propose Triformer, a triangular, variable-specific attention. (i) Linear complexity: we introduce a novel patch attention with linear complexity. When stacking multiple layers of the patch attentions, a triangular structure is proposed such that the layer sizes shrink exponentially, thus maintaining linear complexity. (ii) Variable-specific parameters: we propose a light-weight method to enable distinct sets of model parameters for different variables' time series to enhance accuracy without compromising efficiency and memory usage. Strong empirical evidence on four datasets from multiple domains justifies our design choices, and it demonstrates that Triformer outperforms state-of-the-art methods w.r.t. both accuracy and efficiency. This is an extended version of "Triformer: Triangular, Variable-Specific Attentions for Long Sequence Multivariate Time Series Forecasting", to appear in IJCAI 2022 [Cirstea et al., 2022a], including additional experimental results.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源