论文标题
从嘈杂的量子实验中学习的基础
Foundations for learning from noisy quantum experiments
论文作者
论文摘要
了解从实验中学到的知识是科学进步的核心。在这项工作中,我们使用学习理论的观点来研究量子机中学习物理操作的任务,当时所有操作(状态准备,动态和测量)都是未知的。我们证明,在没有任何先验知识的情况下,如果可以通过组成操作来探索完整的量子状态空间,那么每个操作都可以学习。当一个人无法探索整个状态空间,但所有操作都是近似已知的,而克利福德门中的噪声是与门无关的,我们找到了一种有效的算法来学习所有操作,最多可以表征一个表征初始状态的忠诚度的单个无可核参数。为了学习克利福德门上的噪声通道以达到固定的准确性,我们的算法使用的实验少于以前已知的协议。在更一般的条件下,对噪声的真实描述可以是无可分裂的。例如,我们证明,即使在完美的状态准备和测量下,也没有基准测试协议可以在Clifford+T门上学习GATE依赖的Pauli噪声。尽管无法学习噪声,但我们表明,与一个无噪声的设备相比,在未知状态的多个副本上执行纠缠的测量值的嘈杂量子计算机可以在该状态的学习属性方面产生很大的优势,该设备可以测量单个副本,然后使用经典计算机处理测量数据。具体而言,我们证明,具有双Quibit门错误率的嘈杂量子计算机可以使用状态的$ n $副本实现学习任务,而$ n^{ω(1/ε)} $经典地要求使用。
Understanding what can be learned from experiments is central to scientific progress. In this work, we use a learning-theoretic perspective to study the task of learning physical operations in a quantum machine when all operations (state preparation, dynamics, and measurement) are a priori unknown. We prove that, without any prior knowledge, if one can explore the full quantum state space by composing the operations, then every operation can be learned. When one cannot explore the full state space but all operations are approximately known and noise in Clifford gates is gate-independent, we find an efficient algorithm for learning all operations up to a single unlearnable parameter characterizing the fidelity of the initial state. For learning a noise channel on Clifford gates to a fixed accuracy, our algorithm uses quadratically fewer experiments than previously known protocols. Under more general conditions, the true description of the noise can be unlearnable; for example, we prove that no benchmarking protocol can learn gate-dependent Pauli noise on Clifford+T gates even under perfect state preparation and measurement. Despite not being able to learn the noise, we show that a noisy quantum computer that performs entangled measurements on multiple copies of an unknown state can yield a large advantage in learning properties of the state compared to a noiseless device that measures individual copies and then processes the measurement data using a classical computer. Concretely, we prove that noisy quantum computers with two-qubit gate error rate $ε$ can achieve a learning task using $N$ copies of the state, while $N^{Ω(1/ε)}$ copies are required classically.