论文标题

国王:通过运动学梯度生成可靠模仿的安全 - 关键驾驶场景

KING: Generating Safety-Critical Driving Scenarios for Robust Imitation via Kinematics Gradients

论文作者

Hanselmann, Niklas, Renz, Katrin, Chitta, Kashyap, Bhattacharyya, Apratim, Geiger, Andreas

论文摘要

模拟器提供了自动驾驶系统安全,低成本开发的可能性。但是,当前的驾驶模拟器展示了背景流量的幼稚行为模型。在模拟过程中,通常添加手动调整的场景,以诱导关键的情况。另一种方法是对抗背景流量轨迹。在本文中,我们研究了使用CARLA模拟器生成安全至关重要驾驶场景的方法。我们使用运动学自行车模型作为模拟器的真实动力学的代理,并观察到通过此代理模型进行梯度足以优化背景流量轨迹。基于这一发现,我们提出了King,该金产生了与Black-Box优化相比,成功率高20%的成功率。通过使用基于特权规则的专家算法来解决国王生成的方案,我们获得了模仿学习政策的培训数据。在微调这些新数据之后,我们表明该政策在避免碰撞方面变得更好。重要的是,我们生成的数据导致在通过国王以及传统手工制作的场景产生的两个持有场景上造成碰撞,这表明了鲁棒性的改善。

Simulators offer the possibility of safe, low-cost development of self-driving systems. However, current driving simulators exhibit naïve behavior models for background traffic. Hand-tuned scenarios are typically added during simulation to induce safety-critical situations. An alternative approach is to adversarially perturb the background traffic trajectories. In this paper, we study this approach to safety-critical driving scenario generation using the CARLA simulator. We use a kinematic bicycle model as a proxy to the simulator's true dynamics and observe that gradients through this proxy model are sufficient for optimizing the background traffic trajectories. Based on this finding, we propose KING, which generates safety-critical driving scenarios with a 20% higher success rate than black-box optimization. By solving the scenarios generated by KING using a privileged rule-based expert algorithm, we obtain training data for an imitation learning policy. After fine-tuning on this new data, we show that the policy becomes better at avoiding collisions. Importantly, our generated data leads to reduced collisions on both held-out scenarios generated via KING as well as traditional hand-crafted scenarios, demonstrating improved robustness.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源