论文标题
北极:灵巧双人手动操纵的数据集
ARCTIC: A Dataset for Dexterous Bimanual Hand-Object Manipulation
论文作者
论文摘要
人类直觉地理解,无生命的物体不会自行移动,但是状态的变化通常是由人类操纵引起的(例如,一本书的开头)。机器还不是这种情况。部分是因为没有具有基本真相3D注释的数据集来研究手和铰接物体的物理一致和同步运动。为此,我们介绍了北极 - 两只手的数据集,右手操纵对象,其中包含2.10万个视频帧与准确的3D手和对象网格配对,以及详细的动态触点信息。它包含对剪刀或笔记本电脑等物体的双重表达,手姿势和物体状态随着时间的及时进化。我们提出了两个新型的表达手动对象交互任务:(1)一致的运动重建:给定一个单眼视频,目标是在3D中重建两个手和铰接的物体,以便它们的运动是时空的一致性。 (2)相互作用场估计:密集的相对手动对象距离必须从图像估算。我们分别介绍了两个基线北极和Interfield,并在北极对它们进行定性和定量评估。我们的代码和数据可在https://arctic.is.tue.mpg.de上找到。
Humans intuitively understand that inanimate objects do not move by themselves, but that state changes are typically caused by human manipulation (e.g., the opening of a book). This is not yet the case for machines. In part this is because there exist no datasets with ground-truth 3D annotations for the study of physically consistent and synchronised motion of hands and articulated objects. To this end, we introduce ARCTIC -- a dataset of two hands that dexterously manipulate objects, containing 2.1M video frames paired with accurate 3D hand and object meshes and detailed, dynamic contact information. It contains bi-manual articulation of objects such as scissors or laptops, where hand poses and object states evolve jointly in time. We propose two novel articulated hand-object interaction tasks: (1) Consistent motion reconstruction: Given a monocular video, the goal is to reconstruct two hands and articulated objects in 3D, so that their motions are spatio-temporally consistent. (2) Interaction field estimation: Dense relative hand-object distances must be estimated from images. We introduce two baselines ArcticNet and InterField, respectively and evaluate them qualitatively and quantitatively on ARCTIC. Our code and data are available at https://arctic.is.tue.mpg.de.