论文标题

半摩根

Semi-MoreGAN: A New Semi-supervised Generative Adversarial Network for Mixture of Rain Removal

论文作者

Shen, Yiyang, Wang, Yongzhen, Wei, Mingqiang, Chen, Honghua, Xie, Haoran, Cheng, Gary, Wang, Fu Lee

论文摘要

雨是最常见的天气之一,可以完全降低图像质量并干扰许多计算机视觉任务的执行,尤其是在大雨条件下。我们观察到:(i)雨是雨条和雨天的混合物; (ii)场景的深度决定了雨条的强度以及变成多雨的阴霾的强度; (iii)大多数现有的DERANE方法仅在合成雨图像上接受训练,因此对现实世界的场景概括。在这些观察结果的推动下,我们提出了一种新的半监督的混合物,将降雨清除生成对抗网络(半摩擦量)组成,该混合物由四个关键模块组成:(i)新型的注意力深度预测网络以提供精确的深度估计; (ii)上下文特征预测网络由几个精心设计的详细残留块组成,以产生详细的图像上下文特征; (iii)金字塔深度引导的非本地网络,以有效地将图像上下文与深度信息整合在一起,并产生最终的无雨图像; (iv)全面的半监督损失函数,使该模型不限于合成数据集,而是平稳地将其概括为现实世界中的大雨场景。广泛的实验表明,在合成和现实世界中,我们的二十多种代表性的最先进的方法对我们的方法进行了明显的改进。

Rain is one of the most common weather which can completely degrade the image quality and interfere with the performance of many computer vision tasks, especially under heavy rain conditions. We observe that: (i) rain is a mixture of rain streaks and rainy haze; (ii) the scene depth determines the intensity of rain streaks and the transformation into the rainy haze; (iii) most existing deraining methods are only trained on synthetic rainy images, and hence generalize poorly to the real-world scenes. Motivated by these observations, we propose a new SEMI-supervised Mixture Of rain REmoval Generative Adversarial Network (Semi-MoreGAN), which consists of four key modules: (I) a novel attentional depth prediction network to provide precise depth estimation; (ii) a context feature prediction network composed of several well-designed detailed residual blocks to produce detailed image context features; (iii) a pyramid depth-guided non-local network to effectively integrate the image context with the depth information, and produce the final rain-free images; and (iv) a comprehensive semi-supervised loss function to make the model not limited to synthetic datasets but generalize smoothly to real-world heavy rainy scenes. Extensive experiments show clear improvements of our approach over twenty representative state-of-the-arts on both synthetic and real-world rainy images.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源