论文标题

UMD Banach空间中的向后随机演变夹杂物

Backward Stochastic Evolution Inclusions in UMD Banach Spaces

论文作者

Essaky, E. H., Hassani, M., Rhazlane, C. E.

论文摘要

在本文中,我们证明了对向后的随机演变包含(简称BSEI)的温和$ l^p $ - solution \ begin \ begin {align*}%\ label {bsdi3} \ begin {case} dy_t+ay_tdt \ in G(t,y_t,z_t)dt+z_tdw_t,\ quad t \ in [0,t] y_t =ξ, \ end {cases} \ end {align*}其中$ w =(w_t)_ {t \ in [0,t]} $是一种标准的布朗尼运动,$ a $是$ c_0 $ -semigroup的生成器,$ c_0 $ - semigroup在umd banach space $ e $,$ e $,$ e $的条件下,是$ l^p(f \ e),f \ em, $ p> 1 $和$ g $是满足某些适当条件的设定值功能。 还研究了带有Martingale型2美元的空间中值的过程的情况。

In this paper, we prove the existence of a mild $L^p$-solution for the backward stochastic evolution inclusion (BSEI for short) of the form \begin{align*}%\label{BSDI3} \begin{cases} dY_t+AY_tdt\in G(t,Y_t,Z_t)dt+Z_tdW_t,\quad t\in [0,T] Y_T =ξ, \end{cases} \end{align*} where $W=(W_t)_{t\in [0,T]}$ is a standard Brownian motion, $A$ is the generator of a $C_0$-semigroup on a UMD Banach space $E$, $ξ$ is a terminal condition from $L^p(Ω,\mathscr{F}_T;E)$, with $p>1$ and $G$ is a set-valued function satisfying some suitable conditions. The case when the processes with values in spaces that have martingale type $2$, has been also studied.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源