论文标题
$ \ MATHCAL {PT} $的能级 - Mathieu方程的对称变形
Energy levels for $\mathcal{PT}$-symmetric deformation of the Mathieu equation
论文作者
论文摘要
我们提出了Mathieu方程式的非热变形,该变形保留了$ \ Mathcal {pt} $对称性,并研究其频谱以及从$ \ Mathcal {pt} $ - noflokent to $ \ Mathcal {pt} $的过渡。我们表明,我们的模型不仅重现了文献所期望的行为,而且还表明了频谱的富裕结构。我们还讨论了标记$ \ Mathcal {pt} $破坏的特殊行中边界条件和模型参数的影响。
We propose a non-Hermitian deformation of the Mathieu equation that preserves $\mathcal{PT}$ symmetry and study its spectrum and the transition from $\mathcal{PT}$-unbroken to $\mathcal{PT}$-broken phases. We show that our model not only reproduces behaviors expected by the literature but also indicates the existence of a richer structure for the spectrum. We also discuss the influence of the boundary condition and the model parameters in the exceptional line that marks the $\mathcal{PT}$ breaking.