论文标题

铁电磁2D层CRI3中螺旋发光的多波长磁编码

Multi-wavelength magnetic coding of helical luminescence in ferromagnetic 2D layered CrI3

论文作者

Peng, Bo, Chen, Zhiyong, Li, Yue, Liu, Zhen, Liang, Difei, Deng, Longjiang

论文摘要

二维(2D)Van der Waals(VDW)Ferromagnets已为在单个或少数原子层的极限下操纵自旋开辟了新的空间,并通过长距离铁磁(FM)orders orders and orders和conders创建独特的磁磁性器件设备。但是,到目前为止探索的2D VDW铁磁体很少拥有激子行为。迄今为止,最近已经揭示了FM CRI3,以显示配体领域的光致发光与FM排序相关,但通常与广泛的发射峰。另外,在抗磁磁性(AFM)NIPS3中也观察到了多体激子,但是由于强制性极高,激发子与AFM订单的耦合呈指数级困难。在这里,我们报告了一种直接的方法,可以通过相对简单的微球腔来实现CRI3低磁场处狭窄的螺旋发射和FM阶的强耦合。我们表明,Sio2微球的共振窃窃私语 - 摩尔德模型(WGM)使一系列强大的振荡螺旋排放量增加,在连续波动兴奋下,在〜5 nm的一半最大最大(FWHM)时,其宽度为全宽。在950-1100 nm的范围内实现了可逆的磁控制和螺旋发光的编码。这项工作为创建光子集成芯片的磁编码激光提供了很多机会。

Two-dimensional (2D) van der Waals (vdW) ferromagnets have opened new avenues for manipulating spin at the limits of single or few atomic layers, and for creating unique magneto-exciton devices through the coupling of long-range ferromagnetic (FM) orders and excitons. However, 2D vdW ferromagnets explored so far have rarely possessed exciton behaviors; to date, FM CrI3 have been recently revealed to show ligand-field photoluminescence correlated with FM ordering, but typically with a broad emission peak. Alternatively, many-body excitons have been observed in antiferromagnetic (AFM) NiPS3, but the coupling of excitons with AFM orders is exponentially more difficult, owing to extremely high coercivity. Here, we report a straightforward approach to realize strong coupling of narrow helical emission and FM orders at a low magnetic field in CrI3 through a relatively simple microsphere cavity. We show that the resonant whispering-gallery-modes (WGM) of SiO2 microspheres give rising to a series of strong oscillation helical emissions with a full width at half-maximum (FWHM) of ~5 nm under continuous wave excitation. Reversible magnetic control and coding of helical luminescence with multiwavelength is realized in the range of 950-1100 nm. This work enables plenty of opportunities for creating magnetic encoding lasing for photonic integrated chips.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源