论文标题

线性模式分析和自旋松弛

The linear mode analysis and spin relaxation

论文作者

Hu, Jin

论文摘要

在本文中,介绍了对线性化HERMITE碰撞算子的正常模式的详细分析,这是从线性化旋转Boltzmann方程的线性化,该方程在\ cite {weickgenannt:2021cuo}中提出的巨大费物(weickgenannt:2021cuo})与非偏见的过渡速率的非二元组和与操作机相关的非偏见的分区。通过假设总角动量保护,碰撞项被证明可以很好地描述平衡状态并为碰撞不变性提供了适当的解释,因此与局部自旋极化的研究有关。遵循量子力学中使用的熟悉的方式,我们将求解正常模式的问题视为退化的扰动问题,并计算有趣的11个零模式的分散关系,该模式形成了与所有碰撞不变的一对一的对应关系。我们发现,在普通流体动力学中出现的无旋模模式的结果与教科书中的可用结论一致。至于与自旋相关的模式,我们在波矢量中获得了最高二阶的频率,并将它们与自旋密度波动的耗散相关联。另外,旋转和动量的两个弛豫时间尺度的比率是减少质量的函数,该质量的函数读取了基于当前框架的旋转平衡几乎与动量平衡一样慢,而动量平衡就涉及Quark Gluon等离子体(QGP)中奇怪的Quark旋转。

In this paper, a detailed analysis on normal modes of the linearized Hermite collision operator is presented, which follows from linearizing spin Boltzmann equation for massive fermions proposed in \cite{Weickgenannt:2021cuo} with the non-diagonal part of the transition rate neglected and approximating what we got with a mutilated operator. With the assumption of total angular momentum conservation, the collision term is proved to well describe the equilibrium state and gives proper interpretation for collisional invariants, thus is relevant for the research on local spin polarization. Following the familiar fashion as used in quantum mechanics, we treat the problem of solving normal modes as a degenerate perturbation problem and calculate the dispersion relations for intriguing eleven zero modes, which form one-to-one correspondence to all collisional invariants. We find that the results of spinless modes appearing in ordinary hydrodynamics are consistent with available conclusions in textbooks. As for spin-related modes, we obtain the frequencies up to second order in wave vector and relate them with the dissipation of spin density fluctuation. In addition, the ratio of two relaxation time scales for spin and momentum is shown as a function of reduced mass, which reads that based on present framework spin equilibration is almost as slow as momentum equilibration as far as the strange quark spins in quark gluon plasma (QGP) are concerned.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源