论文标题
使用层次变压器对代码混合语言语义的全面理解
A Comprehensive Understanding of Code-mixed Language Semantics using Hierarchical Transformer
论文作者
论文摘要
作为多语言社区中基于文本沟通的一种流行方式,在线社交媒体中的代码混合已成为研究的重要主题。由于数据缺乏以及强大的和语言不变的表示技术,学习混合语言的语义和形态仍然是一个关键挑战。任何形态上丰富的语言都可以从字符,子字和单词级嵌入中受益,并有助于学习有意义的相关性。在本文中,我们探讨了基于层次变压器的体系结构(HIT),以了解代码混合语言的语义。 HIT由多头自我注意力和外部产品注意力组成组成,以同时理解代码混合文本的语义和句法结构。我们评估了6种印度语言(孟加拉语,古吉拉特语,印地语,泰米尔语,泰卢固语和马拉雅拉姆语)和西班牙语的拟议方法,用于17个数据集中的9个NLP任务。在所有任务中,HIT模型优于最先进的代码混合表示学习和多语言语言模型。我们进一步证明了使用基于蒙版语言建模的预训练,零射击学习和转移学习方法的命中架构的普遍性。我们的经验结果表明,训练前目标可显着提高下游任务的性能。
Being a popular mode of text-based communication in multilingual communities, code-mixing in online social media has became an important subject to study. Learning the semantics and morphology of code-mixed language remains a key challenge, due to scarcity of data and unavailability of robust and language-invariant representation learning technique. Any morphologically-rich language can benefit from character, subword, and word-level embeddings, aiding in learning meaningful correlations. In this paper, we explore a hierarchical transformer-based architecture (HIT) to learn the semantics of code-mixed languages. HIT consists of multi-headed self-attention and outer product attention components to simultaneously comprehend the semantic and syntactic structures of code-mixed texts. We evaluate the proposed method across 6 Indian languages (Bengali, Gujarati, Hindi, Tamil, Telugu and Malayalam) and Spanish for 9 NLP tasks on 17 datasets. The HIT model outperforms state-of-the-art code-mixed representation learning and multilingual language models in all tasks. We further demonstrate the generalizability of the HIT architecture using masked language modeling-based pre-training, zero-shot learning, and transfer learning approaches. Our empirical results show that the pre-training objectives significantly improve the performance on downstream tasks.