论文标题

分散网络中的毒性和模型共享的潜力

Toxicity in the Decentralized Web and the Potential for Model Sharing

论文作者

Zia, Haris Bin, Raman, Aravindh., Castro, Ignacio, Anaobi, Ishaku Hassan, De Cristofaro, Emiliano, Sastry, Nishanth, Tyson, Gareth

论文摘要

“分散网络”(DW)是一个不断发展的概念,它涵盖了旨在在网络上提供更大透明度和开放性的技术。 DW依靠独立的服务器(又名实例)以点对点方式将其融合在一起,以提供一系列服务(例如,微博,图像共享,视频流)。但是,在这种分散的环境中,有毒内容适度是具有挑战性的。这是因为没有中央实体可以定义毒性,也没有可用于构建通用分类器的大量中央数据池。因此,毫不奇怪的是,滥用DW以协调和传播有害物质的备受瞩目的案例。使用Pleroma(一种流行的DW微博服务)的117K用户的90万个帖子数据集,我们量化了有毒内容的存在。我们发现有毒含量很普遍,并且在实例之间迅速传播。我们表明,由于缺乏足够的可用培训数据以及标签所需的精力,因此每类含量内容的自动化是具有挑战性的。因此,我们提出和评估ModPair,这是一种有效检测有毒含量的模型共享系统,获得了平均每一步的宏观F1得分0.89。

The "Decentralised Web" (DW) is an evolving concept, which encompasses technologies aimed at providing greater transparency and openness on the web. The DW relies on independent servers (aka instances) that mesh together in a peer-to-peer fashion to deliver a range of services (e.g. micro-blogs, image sharing, video streaming). However, toxic content moderation in this decentralised context is challenging. This is because there is no central entity that can define toxicity, nor a large central pool of data that can be used to build universal classifiers. It is therefore unsurprising that there have been several high-profile cases of the DW being misused to coordinate and disseminate harmful material. Using a dataset of 9.9M posts from 117K users on Pleroma (a popular DW microblogging service), we quantify the presence of toxic content. We find that toxic content is prevalent and spreads rapidly between instances. We show that automating per-instance content moderation is challenging due to the lack of sufficient training data available and the effort required in labelling. We therefore propose and evaluate ModPair, a model sharing system that effectively detects toxic content, gaining an average per-instance macro-F1 score 0.89.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源