论文标题

基于两层神经网络建模框架的农业流水系统的模型预测控制

Model predictive control of agro-hydrological systems based on a two-layer neural network modeling framework

论文作者

Huang, Zhiyinan, Liu, Jinfeng, Huang, Biao

论文摘要

缺水是一个紧迫的问题,要解决,通过闭环控制提高灌溉水的效率至关重要。但是,复杂的农业流水系统动力学通常在闭环控制应用中构成挑战。在这项工作中,我们提出了一个两层神经网络(NN)框架,以近似农业流水系统的动态。为了最大程度地减少预测误差,将线性偏置校正添加到建议的模型中。该模型由带有区域跟踪的模型预测控制器(ZMPC)采用,该模型旨在将根部区域土壤水分保持在目标区域,同时最大程度地减少灌溉总量。与开放环和闭环应用相比,与基准长期记忆(LSTM)模型相比,所提出的近似模型框架的性能被证明更好。通过提出的框架可以实现ZMPC的大量计算成本降低。为了处理拟议的NN框架的植物模型不匹配引起的跟踪偏移,为ZMPC提出了一个收缩的目标区域。研究了在存在噪声和天气干扰的情况下缩小区域的不同超参数,其中控制性能与具有时间不变的目标区域的ZMPC进行了比较。

Water scarcity is an urgent issue to be resolved and improving irrigation water-use efficiency through closed-loop control is essential. The complex agro-hydrological system dynamics, however, often pose challenges in closed-loop control applications. In this work, we propose a two-layer neural network (NN) framework to approximate the dynamics of the agro-hydrological system. To minimize the prediction error, a linear bias correction is added to the proposed model. The model is employed by a model predictive controller with zone tracking (ZMPC), which aims to keep the root zone soil moisture in the target zone while minimizing the total amount of irrigation. The performance of the proposed approximation model framework is shown to be better compared to a benchmark long-short-term-memory (LSTM) model for both open-loop and closed-loop applications. Significant computational cost reduction of the ZMPC is achieved with the proposed framework. To handle the tracking offset caused by the plant-model-mismatch of the proposed NN framework, a shrinking target zone is proposed for the ZMPC. Different hyper-parameters of the shrinking zone in the presence of noise and weather disturbances are investigated, of which the control performance is compared to a ZMPC with a time-invariant target zone.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源