论文标题
从上方冷却的稳定分层的流体中形成层。走向木星和其他天然气巨头的类似物
Layer formation in a stably-stratified fluid cooled from above. Towards an analog for Jupiter and other gas giants
论文作者
论文摘要
在气体巨型行星的一维演化模型中,当表面冷却时,外部对流带进入内部,而多个对流层则形成对流前线。为了在类似的情况下研究外部对流区以下下方的形成,我们研究了稳定分层的流体的演变,其线性组成梯度不断从上面冷却。我们在一系列2D模拟中使用BousSinesQ近似值,以低和高prandtl数字($ \ Mathrm {pr} = 0.5 $和7),到处都是恒温,并以不同的速度冷却。我们发现在$ \ mathrm {pr} = 7 $,{由于}外部对流区以下扩散热边界层的不稳定性的结果。在低PR下,层不会形成,因为边界层内的温度梯度比大PR小得多,因此,不足以克服组成梯度的稳定效果。对于本研究中使用的分层,长期组成梯度是针对外部对流区域传播的无效屏障,无论是否形成层,整个流体都变得完全混合。我们的结果挑战了气体巨型行星的1D进化模型,该模型预测层是长寿的,并且外部对流信封停止向内前进。我们讨论了将来的工作需要什么才能建立更现实的模型。
In 1D evolution models of gas giant planets, an outer convection zone advances into the interior as the surface cools, and multiple convective layers form beneath that convective front. To study layer formation below an outer convection zone in a similar scenario, we investigate the evolution of a stably-stratified fluid with a linear composition gradient that is constantly being cooled from above. We use the Boussinesq approximation in a series of 2D simulations at low and high Prandtl numbers ($\mathrm{Pr} = 0.5$ and 7), initialized with constant temperature everywhere, and cooled at different rates. We find that multiple convective layers form at $\mathrm{Pr} = 7$, {as the result of an instability in the} diffusive thermal boundary layer below the outer convection zone. At low Pr, layers do not form because the temperature gradient within the boundary layer is much smaller than at large Pr and, consequently, is not large enough to overcome the stabilizing effect of the composition gradient. For the stratification used in this study, on the long-term the composition gradient is an ineffective barrier against the propagation of the outer convection zone and the entire fluid becomes fully-mixed, whether layers form or not. Our results challenge 1D evolutionary models of gas giant planets, which predict that layers are long-lived and that the outer convective envelope stops advancing inwards. We discuss what is needed for future work to build more realistic models.