论文标题
快速水上游泳器优化具有可区分的投影动力学和神经网络流体动力模型
Fast Aquatic Swimmer Optimization with Differentiable Projective Dynamics and Neural Network Hydrodynamic Models
论文作者
论文摘要
水生运动是生物学家和工程师感兴趣的经典流体结构相互作用(FSI)问题。求解完全耦合的FSI方程,用于不可压缩的Navier-Stokes和有限的弹性在计算上很昂贵。在这种系统中优化机器人游泳器设计通常涉及在已经昂贵的模拟之上繁琐的,无梯度的程序。为了应对这一挑战,我们提出了一种新型的,完全可分离的混合方法,用于FSI,结合了2D直接数值模拟,用于游泳器的可变形固体结构和物理受限的神经网络替代物,以捕获流体的流体动力效应。对于游泳者身体的可变形实心模拟,我们使用来自计算机图形领域的最先进技术来加快有限元方法(FEM)。对于流体模拟,我们使用具有基于物理损耗功能的U-NET体系结构来预测每个时间步骤的流场。使用沉浸式边界方法(IBM)在游泳者边界周围采样了来自神经网络的压力和速度场输出,以准确有效地计算其游泳运动。我们证明了混合模拟器在2D Carangiform游泳器上的计算效率和不同性。由于可怜性,模拟器可用于通过基于直接梯度的优化浸入流体中的软体的控件的计算设计。
Aquatic locomotion is a classic fluid-structure interaction (FSI) problem of interest to biologists and engineers. Solving the fully coupled FSI equations for incompressible Navier-Stokes and finite elasticity is computationally expensive. Optimizing robotic swimmer design within such a system generally involves cumbersome, gradient-free procedures on top of the already costly simulation. To address this challenge we present a novel, fully differentiable hybrid approach to FSI that combines a 2D direct numerical simulation for the deformable solid structure of the swimmer and a physics-constrained neural network surrogate to capture hydrodynamic effects of the fluid. For the deformable solid simulation of the swimmer's body, we use state-of-the-art techniques from the field of computer graphics to speed up the finite-element method (FEM). For the fluid simulation, we use a U-Net architecture trained with a physics-based loss function to predict the flow field at each time step. The pressure and velocity field outputs from the neural network are sampled around the boundary of our swimmer using an immersed boundary method (IBM) to compute its swimming motion accurately and efficiently. We demonstrate the computational efficiency and differentiability of our hybrid simulator on a 2D carangiform swimmer. Due to differentiability, the simulator can be used for computational design of controls for soft bodies immersed in fluids via direct gradient-based optimization.