论文标题
经典电动力学中的拓扑,非局部性和二元性
Topology, nonlocality and duality in classical electrodynamics
论文作者
论文摘要
我们最近(Heras等人在Eur。J.Plus 136:847,2021中)认为,经典的电动力学可以通过显示拓扑和非局部电磁角动量的例子来预测非局部效应。在本文中,我们讨论了这种角动量的双重动量,这也是拓扑和非本地的。然后,我们通过电磁角动量统一了这两个角动量,这是由Dyon包围着无限的较长的双重螺旋桨形成的构造形成的,并表明该电磁角动量是拓扑的,因为它依赖于这些绕组的磁场,因为这是在绕组的范围,因为这些磁场是在这些区域,因为这些领域是在电动和磁场上的作用。被排除在电磁二元转换下,是不变的。我们明确验证了这种双重性电磁角动量对环绕Dyon的Liénard-Wiechert场的辐射效应不敏感。我们还展示了这种角动量的二元对称性如何提出对相应的角矩的不同物理解释。
We have recently (Heras et al. in Eur. Phys. J. Plus 136:847, 2021) argued that classical electrodynamics can predict nonlocal effects by showing an example of a topological and nonlocal electromagnetic angular momentum. In this paper we discuss the dual of this angular momentum which is also topological and nonlocal. We then unify both angular momenta by means of the electromagnetic angular momentum arising in the configuration formed by a dyon encircling an infinitely-long dual solenoid enclosing uniform electric and magnetic fluxes and show that this electromagnetic angular momentum is topological because it depends on a winding number, is nonlocal because the electric and magnetic fields of this dual solenoid act on the dyon in regions for which these fields are excluded and is invariant under electromagnetic duality transformations. We explicitly verify that this duality-invariant electromagnetic angular momentum is insensitive to the radiative effects of the Liénard-Wiechert fields of the encircling dyon. We also show how duality symmetry of this angular momentum suggests different physical interpretations for the corresponding angular momenta that it unifies.